

For Cranes use

FUJI INVERTER & CONVERTERS

A HIGHLY EFFICIENT AND EFFECTIVE GLOBAL INVERTER WITH THE FUNCTIONS AND CAPABILITIES FOR ALL YOUR NEEDS.

For Crane use Variable Speed AC Drives

FUJI INVERTER & CONVERTERS

A HIGHLY EFFICIENT AND EFFECTIVE GLOBAL INVERTER WITH THE FUNCTIONS AND CAPABILITIES FOR ALL YOUR NEEDS.

Adaptation to Environment and Safety

Improved Control Perfomance 1500

FRENIC-VG CONCEPT

Comprehensive Line-up

Easier Maintenance

Improved Control Performance

Control method

<Induction motor>

- Vector control with speed sensor
- · Speed sensorless vector control
- V/f Control
- <Synchronous motor>
- · Vector control with speed sensor (including pole position detection)

Comprehensive Line-up

Inverter, converter line-up

Control Performance

- Achieved speed response: 600Hz (Unit type), 100Hz (Stack type) - Speed control accuracy: ±0.005% of max. speed
- Torque control accuracy: ±3% of rated torque (When using vector control with speed sensor and controlling dedicated motor)

Functions for cranes

Convertor

- Flux forcing function
- Load adaptive Control
- Braking control signal

- Line-up features unit type and stack type, facilitating easy construction of large-capacity systems.

- The stack type offers support for up to the following capacities through direct parallel connection.

Three-phase 400V series: Max. 2400kW (MD spec.), 3000kW (LD spec.)

Three-phase 690V series: Max. 1200kW (MD spec.), 1200kW (LD spec.)

Three-phase 400V series		Products Line-UP		Expand capacity range (parallel operation)		Products Line-UP		Expand capacity range (parallel operation)		
Туре	Series name	Form	Specifications *1	50	10	0	Nominal ap	plied motor [kV	V]	00
			HD	3.7kW(37kW)		JU	500	630kW(710kW) Direct parallel	1800kW(200	00 0kW)
	Inverter (FRENIC-VG)	Standard unit	MD			110kW	450kW Direct Multiw	Multiwinding moto parallel inding motor	or 3700 1200kW 2600kW	kW(4200kW)
	PWM Converter (RHC-C)	Standard unit	MD(CT) (LD(VT))	7.5kW(11kW)			630kW(71	0kW) Isolation-less Isolation	1800kW(200 3700	0kW) kW(4200kW)
	Inverter	Standard stack	MD (LD)	30kW(37kW)		315kW	/(355kW) Direct parallel Multiwinding r	800kW(1000kW) 1800kW(2000)kW)
Stack	(FRENIC-VG)	Stack by phase	MD (LD)				630kW (710kW)	800kW(1000kW Direct par Multiwind) rallel 2400kW(3 ing motor	000kW) 4800kW(6000kW)
	PWM Converter	Standard stack	MD (LD)		132kW(160	kW)	315kW(355k Isolation-less Isolation	W) 800kW(1000kW) 1800kW(2000)kW)
	(RHC-D) Stack by phase	Stack by phase	MD (LD)				630kW (710kW)	800kW(1000kW Isolation- Isolation) less 2400kW(3	000kW) 4800kW(6000kW)
	Filter stack (RHF-D)	Standard stack	-		16	0kW	355kW			
	Diode rectifier (RHD-D)	Standard stack	MD (LD)		200k (220k	W W)	315kW(355k Parall	W) el connection	1450kW(1640k	w)

Three-phase 690V series

Tuno	Sorios nomo	Series name Form			Nominal applied motor [kW]					
туре	Series name	TOIL	(applicable load)	5	0 10	00 5	00 10	00 50	000	
Stack	Inverter (FRENIC-VG)	Standard stack	MD (LD)		90kW (110kW)	4!	50kW(450kW) Direct parallel Multiwinding motor	1200kW(1200k 2700kW	:W) (2700kW)	
	PWM Converter (RHC-D)	Standard stack	MD (LD)		132kW (160kW)	4	50kW(450kW) solation-less solation	1200kW(1200k 2700kW	:W) (2000kW)	
	Filter stack (RHF-D)	Standard stack	-		16	0kW 45	0kW			
	Diode rectifier (RHD-D)	Standard stack	MD (LD)		220 (250	kW kW)	OkW Parallel connection	2000kW		

*1 Refer to "Ratings for intended use" on page 6 for specifications (applicable load)

* Unit type inverters have built-in brake circuits as standard (160kW or less).

Configuration: Standard unit \rightarrow Can be used with one set. Stack by phase \rightarrow Categorized by phase, and one inverter set consists of three stacks. Multiple inverters can be connected with a single PWM converter and diode rectifier.

Inverters can also be supplied with DC power (with generator, etc.) without the use of a converter circuit.

Capacity expansion (parallel operation)

Inverters

Direct parallel connection: One single-winding motor is driven by multiple inverters. (Drive is possible with up to three inverters)

Multi-winding motor drive: Specialized motor drive system with multiple windings around a single motor. (Drive is possible with up to six inverters)

PWM converters Transformer isolation (parallel system): System used to isolate the receiving power supply system and converter with a transformer. It is necessary to equip each converter

input with a transformer (No. of parallel connection units: max. 6) Transformerless (parallel system): System in which a PWM converter is connected directly to the receiving power supply system. There is no need to isolate with a transformer. (No. of parallel connection units: max. 3)

Filter circuits if used with transformerless parallel system (multiple units operating in parallel) Standard stack: Use a filter stack. (Filter circuits cannot be configured with peripheral equipment.) Stack by phase: Use peripheral equipment.

3

Dedicated design for panel installation (Stack Type)

New dedicated design (Stack Type) realize panel width shortening (34% reduction compared with conventional design).

The width dimension in the crane system shown below has been reduced by 1650mm (4900mm ➡ 3250mm).

The height and depth dimensions are the same. Ingress protection degree is IP00.

FUJI INVERTER & CONVERTERS

Crane system Diagrams

FRENIC-VG (Stack) system configuration

How to expand the capacity range of the inverters (Stack Type)

Direct parallel connection system and multiwinding motor drive system are provided for driving a large capacity motor.

S	System	Direct parallel connection system	Multiwinding motor drive system		
	Drive motor	Single-winding motor	Multiwinding motor (Exclusive use for multiwinding motors)		
Features	Restriction of wiring length	The minimum wiring length (L) varies with the capacity.	There is no particular limit.		
	Reduced capacity operation	Available	Available (However, the wiring should be switched over.)		
Number of inverters to be connected		2 to 3 inverters	2 to 6 inverters		
Arrangem	ent diagram	When 2 inverters are connected	When 2 inverters are connected		

 *1) OPC-VG1-TBSI is separately required.
 *2) Reduced capacity operation. If a stack fails in case of direct parallel connection, the operation continues with lower output power using the stacks that have not failed

- Example) If one inverter fails when 200kW x 2 inverters are driving a 355kW motor, the operation can continue with the 200kW inverter (capacity of one inverter).
- (Note) To start the reduced capacity operation, consideration is needed to the switch over operation of PG signals or motor constants and sequence circuit. For details, refer to the operation manual.

Configuration table for direct parallel connection

2 or even 3 inverters of the same capacity can be connected in parallel to increase capacity or facilitate system redundancy.

		Standard stack				Stack by phase		
Connection system								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Capacity [kW]	Applicable inverter	Applicable inverter	No. of units	Current [A]	Applicable inverter	Applicable inverter	No. of units	Current [A]
30	FRN30SVG1S-4							
37	FRN37SVG1S-4							
45	FRN45SVG1S-4							
55	FRN55SVG1S-4							
75	FRN75SVG1S-4							
90	FRN90SVG1S-4							
110	FRN110SVG1S-4							
132	FRN132SVG1S-4							
160	FRN160SVG1S-4							
200	FRN200SVG1S-4							
220	FRN220SVG1S-4							
250	FRN250SVG1S-4							
280	FRN280SVG1S-4							
315	FRN315SVG1S-4							
355		FRN200SVG1S-4	2	716				
400		FRN220SVG1S-4	2	789				
500		FRN280SVG1S-4	2	988				
630		FRN220SVG1S-4	3	1183	FRN630BVG1S-4			
710		FRN280SVG1S-4	3	1482	FRN710BVG1S-4			
800		FRN280SVG1S-4	3	1482	FRN800BVG1S-4			
1000						FRN630BVG1S-4	2	2223
1200						FRN630BVG1S-4	2	2223
1500						FRN800BVG1S-4	2	2812
1800						FRN630BVG1S-4	3	3335
2000						FRN710BVG1S-4	3	3905
2400						FRN800BVG1S-4	3	4218

*1) OPC-VG1-TBSI is required for each stack.

How to expand the capacity range of the PWM converters (Stack Type)

A "transformer-less parallel system" and "transformer insulation type parallel system" can be used to expand the total converter capacity.

Configuration table for parallel connection (Transformer isolation-less parallel system)

2 or 3 converters of the same capacity can be connected in parallel to increase capacity or facilltate system redundancy.

*2) OPC-VG7-SIR is required for each stack.

Easier Maintenance and Improved Reliability

Easy stack replacement

The inverters (stack type) have an arrangement with consideration for the installation of the product into the panel and easier change.

The inverters (stack type) (132 to 315 kW) can easily be installed or changed because they have caster.

With the inverters (stack type) (630 to 800 kW), stacks are divided for each output phase (U, V and W), which has realized the lighter weight.

Nominal applied motor capacity [kW] (MD spec)	30 to 110	132 to 450	630 to 800
Туре	400V: FRN30SVG1S-4□ to FRN110SVG1S-4□ 690V: FRN90SVG1S-69□ to FRN110SVG1S-69□	400V: FRN132SVG1S-4⊟to FRN315SVG1S-4⊟ 690V: FRN132SVG1S-69⊡to FRN450SVG1S-69⊡	FRN630BVG1S-4⊡to FRN800BVG1S-4⊡
Categoly	Single unit	Single unit	Stack by phase
Wheels	Not provided	Provided	Provided
Arrangement			P N Uptase Viptase W ptase
Maintenance	The weight of one stack is reduced (50 kg or less) to give consideration to replacement work.	The models where each stack is heavy have wheels in order to change the stacks easily. A lifter for replacement is available.	Trim weight by dividing the stack into 3 parts by each output phase (U, V and W). In the event of a breakdown, only the target phase needs to be replaced with a new one. The stack to be replaced should be an exclusive part.
Approx.weight [kg]	30 to 45	95 to 135	135×3

Model compatibility

The FRENIC-VG is compatible with Fuji Electric's older vector controlled inverter models. Updating to the FRENIC-VG can be performed easily.

Compatibility with FRENIC5000VG7S

The FRENIC-VG function codes are compatible with VG7 function codes, allowing function codes from the VG7 to be set in the FRENIC-VG directly. Furthermore, function codes can be copied directly from the VG7 to the FRENIC-VG with the PC loader.

Furthermore, with the unit type, an adapter (conversion adapter) has been prepared for same capacities, in order to fit the same dimensions as for VG7S.

Compatibility with FRENIC5000VG5S

The function code numbers and data definitions differ between FRENIC-VG and VG5, so they can not be set from VG5 to FRENIC-VG directly.

Codes can be updated easily from VG5 to FRENIC-VG settings by using a function code conversion sheet.

Furthermore, with the unit type, an adapter (conversion adapter) has been prepared for some capacities, in order to fit the same dimensions as for VG5.

USB Mini B connector

Connection available

in the inverter front.

PC loader functions

PC Loader can be used via the USB connector (mini B) provided on the front cover.

- The front cover does not have to be removed.
- No RS-485 converter is needed.
- Commercial cables can be used.

[Fault diagnosis using the trace back function]

- Internal data, time and date around the fault are recorded. The real-time clock (clock function) is built-in as standard.
- Data are backed up by battery. *Battery: 30kW or above (built-in as standard), 22kW or below (available as option: OPK-BP)
- Trace waveform can be checked on the PC loader

* If data exists, it can be analyzed anywhere.

Keypad

- Wide 7-segment LED ensures comfortable view.
- The back-light is incorporated in the LCD panel, which allows the use of the keypad even in the dark.
- Enhanced copy function

The function codes can be copied to other inverters easily. (Three patterns of function codes can be stored.) Copying data in advance reduces restoration time when problems occur, by exchanging the keypad when replacing the unit. [Easy edit and detail monitor]

USB cable

Data editing and detailed data monitor analysis operations are much easier than with a conventional PC loader.

FRENIC-VG

Function code setting

PC

333333333333333333<u>1</u>11

Trace function

Real-time trace: for long-term monitoring Historical trace: for detailed data diagnosis for short periods

data explanation display for each code.

User-defined displays (customized displays),

Trace back: for fault analysis (last 3 occurrences)

*The paid-for loader software (WPS-VG1-PCL) supports real-time tracing and historical tracing. Trace data can be stored in the memory even while the power is off. With 22kW or below capacity inverters, optional memory back-up battery must be installed.

- Remote control operation is available.
 The Keypad can be remotely installed and operated by connecting the keypad with a standard LAN cable.
- JOG (jogging) operation can be executed using the Keypad.
- The HELP key displays operation guidance.

Simple fault diagnosis

Save alarm data

- The number of alarm data to be stored has been increased from the conventional model.

Thanks to the real-time clock function built-in as standard, the complete data of the latest and last 3 alarm occurences is stored: time, speed command, torque, current and others. This enables machine units to be checked for abnormalities.

⇒As for previous model, new alarm data overwrote and deleted existing alarm data. This is solved with the new VG model.

Alarm severity selection

Alarm severity (serious and minor) can be selected, eliminating the risk of critical facility stoppage due to a minor fault.

	30-relay output	Y-terminal output	Inverter output	Selection	
Motor overload, communications error,	No output (minor fault)	Provided	Operation continued	Can be selected	
DC fan lock, etc.	Output	Not provided	Shut off	for each function.	
Blown fuse, excessive current, ground fault, etc.	Output	Not provided	Shut off	Fixed	

PG fault diagnosis

- The PG interface circuit incorporated as standard detects disconnection of the power supply line as well as the PG signal line.
- A mode was added that judges if it is a PG fault or a fault on the inverter side Simulated output mode is provided at the PG pulse output terminal (FA and FB).
 Operation can be checked by connecting this to the PG input terminal.

A

Components with a long life

For the various consumable parts inside the inverter, their designed lives have been extended to 10 years.

This also extended the equipment maintenance cycles.

Life conditions

Ambient temperature: 40°C², load factor: 100% (HD spec), 80% (MDspecs) *1) The planned life is determined by calculation, and is not the guaranteed value.

*2) For the stack type, the ambient temperature is 30°C.

Cooling fan	
Smoothing capacitor on main circuit	10 years
Electrolytic capacitors on PCB	
pplicable models : FRENIC-VG	

Design lifetime*1

Converter (RHC-D, RHF-D, RHD-D) (excluding FRENIC-VG7, RHC-C)

Useful functions for test run and adjustment

- Customization of functions for test run and adjustment (Individual items on the loader can be set to be displayed or not.)
- Simulated fault alarm issued by a special function on the Keypad
- Monitor data hold function

Life-limited component

- Simulated operation mode
- Simulated connection allows the inverter to be operated with internal parts in the same way as if they were connected to the motor, without actually being connected.
- The externally input I/O monitor and PG pulse states can be checked on the Keypad.

Applicable models : FRENIC-VG

Enhanced lifetime alarm

- Lifetime alarms can be checked rapidly on the Keypad and PC loader (optional).
- Facility maintenance can be performed much easier thanks to lifetime alarms.

Items								
Inverter accumulated time (h)	No. of inverter starts (times)	Facility maintenance warning Accumulated time (h) No. of starts (times)	Inverter lifetime alarm information is displayed.					

Applicable models : FRENIC-VG

Easy wiring (removable control terminal block)

- The terminal block can be connected to the inverter after control wiring work is completed. Wiring work is simplified.
- Restoration time for updating equipment, problem occurrence, and inverter replacement has been drastically reduced. Just mount the wired terminal block board to the replaced inverter.

Unit Type

Applicable models : FRENIC-VG

Adaptation to Environment and Safety

Compliance with overseas standards

 The FRENIC-VG complies with the following overseas standards in its standard configuration, allowing standardization of device and machinery specifications in Japan and overseas:
 EC directives: Low Voltage Directive, RoHS Directive, Machinery Directive, UL Standards, cUL Standards,

KC Certification - The FRENIC-VG also complies with the EMC

Directive when the standard model is combined with an option (EMC filter).

Enviroment

Environmental resistance has been enhanced compared to conventional inverters.

Environmental resistance of cooling fan has been enhanced.
 Nickel and Tin plating are applied to copper bars.

Environmental resistance has been enhanced on the FRENIC-VG compared to conventional models; however, the following environments should be examined based on how the equipment is being used.

- a. Sulfidizing gas
- b. Conductive dust and foreign particles
- c. Others: unique environments not included under standard environments

Contact Fuji Electric before using the product in environments such as those indicated above. Salt resistant is option. Stack Type

Safety standards

- The functional safety (FS) function STO that conforms to the FS standard EN61800-5-2 is incorporated as standard.
- The FS functions STO, SS1, SLS and SBC that conform to FS standard EN61800-5-2 can be also available by installing the option card OPC-VG1-SAFE. These functions are available only when controlling the motor using feedback encoder (closed loop).

Safety function STO: Safe Torque Off

This function shuts off the output of the inverter (motor output torque) immediately. Safety function SS1: Safe Stop 1

This function decreases the motor speed to shut down the motor output torque (by STO FS function) after the motor reaches the specified speed or after the specified time has elapsed.

Safety function SLS: Safely Limited Speed

This function prevents the motor from rotating over the specified speed. Safety function SBC: Safe Brake Control

This function outputs a safe signal of the motor brake control.

Conforms to Marine standards

- A Marine standards compatible product lineup has been added as semi-standard products.

These products can be used for shipping equipment. (Certifying body: Classification society DNV GL)

*Three-phase 690V stack type only

A separate EMC filter and Zero phase reactor are required. Contact Fuji for details.

RoHS Directive compliance

FRENIC-VG complies with European regulations that limit the use of specific hazardous substances (RoHS) as a standard. Applicable models : FRENIC-VG

Six hazardous substances

Lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyl (PBB), polybrominated diphenyl ether (PBDE) *Contact Fuji Electric for detailed information.

About RoHS

Directive 2011/65/EU, promulgated by the European Parliament and European Council, limits the use of specific hazardous substances included in electrical and electronic devices.

P	WM converter + inverter				
Ν	lote Transformer(multi phase)	Power Supply	Single winding mot	or Wulti winding m	otor
	F Filter circuit (individual) C	Converter unit(RHC-C) or I stack(RHC-D)	Inverter unit or sta	SI Ck SIR Optical commun TBSI	nication card (option)
No.	System structure	System construction	Filter stack (RHF)(*1)	Filter for RHC-C series (individual type)	Motor capacity (Ex. FRN315SVG1-4 parallel use)
1		O Available CNV: 6 pieces/max INV: 6 parallel connection/max	Ø Available	■ Converter unit (RHC-C)	~1800kW (6 winding motor)
2		X Not available (Direct parallel connection. Use the No.3 connection.)	_	_	_
3		O Available CNV: 6 parallel connection/max INV: 3 parallel connection/max	Ø Available	Converter unit (RHC-C) © Available Converter stack (RHC-D) •RHC132S to 315S-4D	~800kW (INV: 3 parallel connection)
4	F C I TBSI F C I	O Available CNV: 6 pieces/max INV: 6 parallel connection/max	Ø Available	→XNot Available •RHC630B to 800B-4D →⊚Available	~1800kW (6 winding motor)
5		X Not available (If sharing converter output, use the No.7 connection.)	_	_	_
6		X Not available (If sharing converter output, use the No.8 connection.)	_	—	_
7		O Available CNV: 3 parallel connection/max INV: 6 parallel connection/max	Ø Available		~1800kW (6 winding motor)
8	F C I TBSI SIR F C I TBSI TBSI TBSI TBSI	O Available CNV: 3 parallel connection/max INV: 3 parallel connection/max	Ø Available	Converter unit (RHC-C) © Available Converter stack (RHC-D) •BHC132S to 315S-4D	~800kW (INV: 3 parallel connection)
9		O Available	Ø Available	→ X Not Available •RHC630B to 800B-4D → © Available	~CNV capacity
10		O Available	Ø Available		~CNV capacity
(*1) The ((Note 1)	filter stack (RHF) is for exclusive use with the converter Capacity of inverter should be same	stack (RHC-D). It cannot be used with	n the converter unit (RI	HC-C).	for crane systems.

System Configuration Overview

(*1) The filter stack (RHF) is for exclusive use with the converter stack (RHC-D). It cannot be used with the converter un (Note 1) Capacity of inverter should be same
 (Note 2) When several inverters are powered by one converter, converter capacity >= total inverter capacity Check in the manual the capability of converter charging circuit.
 (Note 3) When operating a motor using direct parallel system, a minimum wiring length between motor and inverter should be kept. Check the manual.
 (Note 4) Power should be applied to all converters at the same time.

FUJI INVERTER & CONVERTERS

77111

(Note 1) Use inverters of the same capacity for direct parallel systems and multiwinding motor drive systems. (Note 2) Motor capacity is calculated based on a power supply voltage of 400 V.

(Note 3) Turn ON the main power supply for all converters at the same time.

Model variation (Inverter)

		400V Series		690V Series	
	Unit	Туре	Stack Type	Stack Type	
Nominal applied motor (kW)	HD (150%, 1 min./200%, 3sec.)	MD (150% 1min.)	MD (150% 1min.)	MD(CT) (150% 1min.)	
Applied load	High Duty Spec	Medium Duty Spec	Medium Duty Spec	Medium Duty Spec	
3.7	FRN3.7VG1S-4				
5.5	FRN5.5VG1S-4				
7.5	FRN7.5VG1S-4				
11	FRN11VG1S-4				
15	FRN15VG1S-4				
18.5	FRN18.5VG1S-4				
22	FRN22VG1S-4				
30	FRN30VG1S-4		FRN30SVG1S-4		
37	FRN37VG1S-4		FRN37SVG1S-4		
45	FRN45VG1S-4		FRN45SVG1S-4		
55	FRN55VG1S-4		FRN55SVG1S-4		
75	FRN75VG1S-4		FRN75SVG1S-4		
90	FRN90VG1S-4		FRN90SVG1S-4	FRN90SVG1S-69	
110	FRN110VG1S-4	FRN90VG1S-4	FRN110SVG1S-4	FRN110SVG1S-69	
132	FRN132VG1S-4	FRN110VG1S-4	FRN132SVG1S-4	FRN132SVG1S-69	
160	FRN160VG1S-4	FRN132VG1S-4	FRN160SVG1S-4	FRN160SVG1S-69	
200	FRN200VG1S-4	FRN160VG1S-4	FRN200SVG1S-4	FRN200SVG1S-69	
220	FRN220VG1S-4	FRN200VG1S-4	FRN220SVG1S-4		
250		FRN220VG1S-4	FRN250SVG1S-4	FRN250SVG1S-69	
280	FRN280VG1S-4		FRN280SVG1S-4	FRN280SVG1S-69	
315	FRN315VG1S-4	FRN280VG1S-4	FRN315SVG1S-4	FRN315SVG1S-69	
355	FRN355VG1S-4	FRN315VG1S-4		FRN355SVG1S-69	
400	FRN400VG1S-4	FRN355VG1S-4		FRN400SVG1S-69	
450		FRN400VG1S-4		FRN450SVG1S-69	
500	FRN500VG1S-4				
630	FRN630VG1S-4		FRN630BVG1S-4		
710			FRN710BVG1S-4		
800			FRN800BVG1S-4		

low to	read the mode	l number							
		FRN	30	<u>S</u> VG	1	<u>S</u> - <u>-</u>	<u>4</u> <u>J</u>		
Code	Series name							Code	Destination / Instruction Manual
FRN	FRENIC Series							J	Japanese
								E	English
Code	Nominal applied motor capacity							С	Chinese
3.7	3.7kW							Other	Special specification
5.5	5.5kW							L	
7.5	7.5kW							Code	Input power source
2	2							0000	
800	800kW							4	Three-phase 400V
Code	Form							09	Three-phase 690V
None	Unit type							Code	Structure
S	Standard stack							S	Standard
В	Stack by phase							0	otandard
Code	Application range							Code	Developed inverter series
VG	High performance vector control							1	1 Series

Caution! The product detail described in this document is intended for selecting a model. When using a product, read the Instruction Manual carefully and use the product properly.

Model variation (Converter)

		400V \$	Series	690V Series			
	Unit Type (PWM)	Stack Type (PWM)	Stack Type (Filter)	Diode rectifier	Stack Type (PWM)	Stack Type (Filter)	Diode rectifier
Nominal applied motor (kW)	MD(CT) (150% 1min.)	MD (150% 1min.)	-	MD (150% 1min.)	MD (150% 1min.)	-	MD (150% 1min.)
Applied load	High Duty Spec	Medium Duty Spec	—	Medium Duty Spec	Medium Duty Spec	—	Medium Duty Spec
3.7							
5.5							
7.5	RHC7.5-4C						
11	RHC11-4C						
15	RHC15-4C						
18.5	RHC18.5-4C						
22	RHC22-4C						
30	RHC30-4C						
37	RHC37-4C						
45	RHC45-4C						
55	RHC55-4C						
75	RHC75-4C						
90	RHC90-4C						
110	RHC110-4C						
132	RHC132-4C	RHC132S-4D 🗌	RHF160S-4D		RHC132S-69D 🗌	RHF160S-69D 🗌	
160	RHC160-4C	RHC160S-4D	RHF160S-4D		RHC160S-69D 🗌	RHF160S-69D 🗌	
200	RHC200-4C	RHC200S-4D	RHF220S-4D	RHD200S-4D	RHC200S-69D	RHF220S-69D 🗌	
220	RHC220-4C	RHC220S-4D 🗌	RHF220S-4D				RHD220S-69D
250					RHC250S-69D 🗌	RHF280S-69D 🗌	
280	RHC280-4C	RHC280S-4D 🗆	RHF280S-4D		RHC280S-69D	RHF280S-69D	
315	RHC315-4C	RHC315S-4D 🗌	RHF355S-4D 🗌	RHD315S-4D 🗌	RHC315S-69D 🗌	RHF355S-69D 🗌	
355	RHC355-4C				RHC355S-69D 🗌	RHF355S-69D 🗌	
400	RHC400-4C				RHC400S-69D	RHF450S-69D	
450					RHC450S-69D	RHF450S-69D	RHD450S-69D
500	RHC500-4C						
630	RHC630-4C	RHC630B-4D					
710		RHC710B-4D					
800		RHC800B-4D					

77711

Caution! The product detail described in this document is intended for selecting a model. When using a product, read the Instruction Manual carefully and use the product properly.

FRENIC-VG (Inverter)

Standard specifications

HD specification (Unit Type)

400V series

	Type FRN VG1S-4	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
Non	ninal applied motor [kW]	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
Rate	ed capacity [kVA] (*1)	6.8	10	14	18	24	29	34	45	57	69	85	114	134	160	192	231	287	316	396	445	495	563	731	891
Rate	ed current [A]	9.0	13.5	18.5	24.5	32.0	39.0	45.0	60.0	75.0	91.0	112	150	176	210	253	304	377	415	520	585	650	740	960	1170
Ove	rload current rating								150%	ofr	ated	curre	nt -1	min.	(*2)	200	% -3	s. (*3)						
	Main power Phase, Voltage, Frequency	3-р	hase	380	to 48	80V, 5	0Hz/	60Hz	2				3-	phas	e 38 38	0 to 4 0 to 4	140V 180V	/50Hz /60Hz	z, z (*4)						
voltage	Auxiliary control power supply Phase, Voltage, Frequency	Sin	gle pl	hase	380	to 48	0V, 5	0Hz/	60Hz																
, kiddus	Auxiliary input for fan power Phase, Voltage, Frequency (*5)						-						Si	ngle	phas	e 380 380) to 4) to 4	40V, 80V/	50H: 60Hz	z (*4)					
ver :	Voltage/frequency variation	Volt	age:	+10	to -1	5%,	Frequ	lency	/: +5	to -5	%, V	oltag	e un	balar	ice: 2	2% o	r less	(*6)							
Pov	Rated current [A] (with DCR)	7.5	10.6	14.4	21.1	28.8	35.5	42.2	57.0	68.5	83.2	102	138	164	210	238	286	357	390	500	559	628	705	881	1115
	(*7) (without DCR)	13.0	17.3	23.2	33	43.8	52.3	60.6	77.9	94.3	114	140	-	-	-	-	-	-	-	-	-	-	-	-	-
	Required power supply capacity [kVA] (*8)	5.2	7.4	10	15	20	25	30	40	48	58	71	96	114	140	165	199	248	271	347	388	436	489	610	773
Bral	king method /braking torque	Braki	ng resis	tor disc	charge o	control:	150% b	oraking	torque,	Separa	tely inst	talled b	raking r	esistor	(option)	, Separa	ately ins	stalled b	raking	unit (op	tion for	FRN20	ovg1s-	-4J or h	igher)
Carı	ier frequency [kHz] (*9)					2	2 to 1	5									2	to 1	0					2 t	o 5
Арр	rox.weight [kg]	6.2	6.2	6.2	11	11	11	11	25	26	31	33	42	62	64	94	98	129	140	245	245	330	330	555	555
Enc	osure	IP2	0 clo	sed t	ype l	JL op	oen ty	/pe		IPC)0 op	en ty	pe U	L op	en ty	pe (IF	20 c	losed	d typ	e is a	vaila	ble a	s opt	ion)	
Арр	licable safety standards	UL	508C	, C2	2.2 N	lo.14	(*10)	, IEC	/EN 6	6180	0-5-1	(Ove	ervolt	tage	cate	gory:	3)								

Note 1) The specification above are established when the function code F80 = 0 (HD specification) is applied.

Note 2) When using DC reactor, note the followings.

•Type FRN_VG1S-4J: 55kW or below: provided as option, 75kW or above: Provided as standard.

•Type FRN VG1S-4E, -4C: Provided as option.

*1) The rated output voltage is 440V for 400V series.

*2) When the inverter output frequency converter value is 10Hz or less, the inverter may trip early due to overload depending on the conditions such as ambient temperature.

When the inverter output frequency converter value is 5Hz or less, the inverter may trip early due to overload depending on the conditions such as ambient temperature. *3)

*4) The inverters with the power supply of 380 to 398V/50Hz and 380 to 430V/60Hz must be switched using a connector inside the inverter. The output power of the inverter with 380V may drop depending on situations. For details, refer to the FRENIC-VG User Manual chapter 10.5.

This input is used to supply the AC fan when supplying the inverter from DC inputs, like when combining the inverter with RHC or RHD converter (therefore it is not always used). *5) Max. voltage [V] - Min. voltage [V]

*6) Voltage unbalance [%] = × 67 Three-phase average voltage [V]

Use an AC reactor if the voltage unbalance exceeds 2%. *7) The value is calculated on assumption that the inverter is connected with a power supply capacity of 500kVA (or 10 times the inverter capacity if the inverter capacity exceeds 50kVA) and %X is 5%.

*8) The values shown apply when DC reactor is used. *9) The inverter may automatically reduce carrier frequency in accordance with ambient temperature or output current in order to protect itself.

*10) The FRN75/160/200/220/355/400VG1S-4 do not conform to C22.2 No.14. If necessary, please contact Fuji Electric.

MD specification (Unit Type)

400V series

	Type FRN VG1S-4	90	110	132	160	200	220	280	315	355	400
Nor	ninal applied motor [kW] (*8)	110	132	160	200	220	250	315	355	400	450
Rat	ed capacity [kVA] (*1)	160	192	231	287	316	356	445	495	563	640
Rat	ed current [A]	210	253	304	377	415	468	585	650	740	840
Ove	rload current rating				150%	% of rated c	urrent -1mir	า. (*2)			
	Main power Phase, Voltage, Frequency	3-phase 3	380 to 440V 380 to 480V	/50Hz, /60Hz (*3)							
voltage	Auxiliary control power supply Phase, Voltage, Frequency	Single ph	ase 380 to 4	480V, 50Hz/	60Hz						
supply	Auxiliary input for fan power Phase, Voltage, Frequency (*4)	Single ph	ase 380 to 4 380 to 4	440V, 50Hz 480V/60Hz	(*3)						
ver :	Voltage/frequency variation	Voltage: -	+10 to -15%	, Frequency	y: +5 to -5%	, Voltage ur	nbalance: 29	% or less (*5	5)		
Pov	Rated current [A] (with DCR)	210	238	286	357	390	443	559	628	705	789
	(*6) (without DCR)					-	-				
	Required power supply capacity [kVA] (*7)	140	165	199	248	271	312	388	436	489	547
Brał	king method /braking torque	Braking resi Separately i	stor discharge on stalled braking	control: 150% k g resistor (optio	praking torque, n)	Braking re Separatel Separatel	esistor discl y installed b y installed b	harge contro praking resis praking unit	ol: 150% bra stor (option) (option)	aking torque	5
Carr	ier frequency [kHz]					2 t	o 4				
Арр	rox.weight [kg]	62	64	94	98	129	140	245	245	330	330
Enc	osure	IP00 oper	n type UL o	pen type (IP	20 closed ty	pe is availa	ble as optic	on)			
Арр	licable safety standards	UL 508C,	C22.2 No.1	14 (*9), IEC/I	EN 61800-5	-1 (Overvolt	age catego	ry: 3)			

7711

Note 1) The specifications above are established when the function code F80 = 3 (MD specification) is applied.

Note 2) When using DC reactor, note the followings.

•Type FRN VG1S-4J: Provided as standard. •Type FRN VG1S-4E, -4C: Provided as option.

*1) When the rated output voltage is 440V

*2) When the converted inverter output frequency is less than 1Hz, the inverter may trip earlier in some ambient temperature conditions if the motor is overloaded

*3) When the power supply is 380 to 398V at 50 Hz or 380 to 430V at 60Hz, a connector inside the inverter must be reconnected accordingly.

The output of the inverter with 380V may drop depending on situations. For the detail, refer to the FRENIC-VG User Manual 10.5.

*4) This input is used to supply the AC fan when supplying the inverter from DC inputs, like when combining the inverter with RHC or RHD converter (therefore it is not always used).

*5) Voltage unbalance [%] = <u>Max. voltage [V]</u> - Min. voltage [V] <u>Three-phase average voltage [V]</u> × 67

Use an AC reactor if the voltage unbalance exceeds 2%.

*6) The value is calculated on assumption that the inverter is connected with a power supply capacity of 10 times the inverter capacity and %X is 5%.

*7) The values shown apply when DC reactor is used.

*8) Since heat generation of the motor due to low carrier may be increased depending on the load condition, designate the MD specification when ordering the motor.

*9) The FRN160/200/220/355/400VG1S-4 do not conform to C22.2 No.14. If necessary, please contact Fuji Electric.

FRENIC-VG (Inverter)

Standard specifications

MD specifications (Stack Type)

400V series

-	Γype FRN□○V1S-4□	30S	37S	45S	55S	75S	90S	110S	132S	160S	200S	220S	250S	280S	315S	630B(*5)	710B(*5)	800B(*5)
No	minal applied motor [kW]	30	37	45	55	75	90	110	132	160	200	220	250	280	315	630	710	800
Rat	ed capacity [kVA] (*1)	45	57	69	85	114	134	160	192	231	287	316	356	396	445	891	1044	1127
Rat	ed current [A]	60	75	91	112	150	176	210	253	304	377	415	468	520	585	1170	1370	1480
Ove	erload current rating							150	% of ra	ted curr	rent -1n	nin. (*2)						
e	Main power	Refer t	o the s	pecifica	tions o	f PWM	conver	ter of D	C input	type.								
y voltaç	Auxiliary control power supply Phase, Voltage, Frequency	Single	phase	380 to 4	480V, 5	0/60Hz												
ower supply	Auxiliary input for fan power Phase, Voltage, Frequency	Auxilia	ry inpu	t for fan	power		Single	phase	380 to 4 380 to 4	440V, 50 480V, 60	0Hz 0Hz (*3))						
ď	Voltage/frequency variation	Voltage	e: +10 1	o -15%	, Frequ	iency: +	-5 to -5	%										
Car	rier frequency [kHz] (*4)									2								
App	prox. weight [kg]	30	30	30	37	37	45	45	95	95	95	125	135	135	135	135×3(*6)	135×3(*6)	135×3(*6)
End	losure			-		-	-		IP	00 oper	type				-			

Note 1) The above specifications are for Function Code F80=0, 2 and 3 (MD specification). Default setting=0. 0 and 2 are displayed as HD on keypad.

*1) When the rated output voltage is 440V

2) When the converted inverter output frequency is less than 1Hz, the inverter may trip earlier in some ambient temperature conditions if the motor is overloaded.

*3) When the power supply is 380 to 398V at 50Hz or 380 to 430V at 60Hz, a connector inside the inverter must be reconnected accordingly.

*4) When the synchronous motor is run at a low carrier frequency, the permanent magnet may be over-heated and demagnetized by harmonic components of the output current. Be sure to check the permissible carrier frequency of the motor.

*5) One set of the inverter consists of three stacks.

*6) This weight may be changed. For details, contact the Sales Department at Fuji.

690V series

Т	ype FRN □○VG1S-69□	90S	110S	132S	160S	200S	250S	280S	315S	355S	400S	450S			
No	minal applied motor [kW]	90	110	132	160	200	250	280	315	355	400	450			
Rat	ed capacity [kVA] (*1)	120	155	167	192	258	317	353	394	436	490	550			
Rat	ed current [A]	100	130	140	161	216	265	295	330	365	410	460			
Ov	erload current rating					150% of ra	ated current	-1min. (*2)							
ge	Main power	Refer to th	e specificat	ions of PWI	M converter	of DC inpu	t type. (690)	V series)							
ply volta	Auxiliary control power supply Phase, Voltage, Frequency	Single phase 575 to 690V, 50/60Hz													
wer supl	Auxiliary input for fan power Phase, Voltage, Frequency	Single pha Single pha	se 660 to 6 se 575 to 6	90V, 50/60⊦ 00V, 50/60⊦	łz łz (*3)										
Po	Voltage/frequency variation	Voltage:+1	0 to -15%,	Frequency:	+5 to -5%										
Ca	rier frequency [kHz] (*4)						2								
Ap	prox. weight [kg]	45	45	95	95	95	135	135	135	135	135	135			
End	closure					IP	00 open typ	be							

Note 1) The above specifications are for Function Code F80=0, 2 and 3 (MD specification). Default setting=0. 0 and 2 are displayed as HD on keypad.

*1) When the rated output voltage is 690V

*2) When the converted inverter output frequency is less than 1Hz, the inverter may trip earlier in some ambient temperature conditions if the motor is overloaded.

*3) When the power supply is 575 to 600V at 50Hz, 60Hz, a connector inside the inverter must be reconnected accordingly.

*4) When the synchronous motor is run at a low carrier frequency, the permanent magnet may be over-heated and demagnetized by harmonic components of the output current. Be sure to check the permissible carrier frequency of the motor.

Dimensions

FRENIC-VG (Inverter)

Dimensions

Dimensions (Stack Type)

FRN630BVG1S-4 I to FRN800BVG1S-4

Variable Speed AC Drives

					[Unit: mm]
				Dimensions	
Series	Inverter type	Fig	w	н	D
	FRN30SVG1S-4	A			
	FRN37SVG1S-4	A	226.2	740	406.3
	FRN45SVG1S-4	A			
	FRN55SVG1S-4	В			
	FRN75SVG1S-4	В	226.2	880	406.2
	FRN90SVG1S-4	В	220.2	000	400.3
	FRN110SVG1S-4	В			
4001/	FRN132SVG1S-4	С			
400V	FRN160SVG1S-4	С	226.2	1100	567.3
361163	FRN200SVG1S-4	С			
	FRN220SVG1S-4	D			
	FRN250SVG1S-4	D	226.2	1400	567 3
	FRN280SVG1S-4	D	220.2	1400	307.3
	FRN315SVG1S-4	D			
	FRN630BVG1S-4 (*1)	E			
	FRN710BVG1S-4 (*1)	E	226.2	1400	567.3
	FRN800BVG1S-4 (*1)	E			
	FRN90SVG1S-69	В	226.2	880	406.3
	FRN110SVG1S-69	В	220.2	800	400.5
	FRN132SVG1S-69	С			
	FRN160SVG1S-69	С	226.2	1100	567.3
6001/	FRN200SVG1S-69	С			
series	FRN250SVG1S-69	D			
001100	FRN280SVG1S-69	D			
	FRN315SVG1S-69	D	226.2	1400	567.2
	FRN355SVG1S-69	D	220.2	1400	007.0
	FRN400SVG1S-69	D			
	FRN450SVG1S-69	D			

*1) One set of the inverter consists of three stacks. The touch panel is connected to the V phase only.

Power regenerative PWM converter (RHC series)

Features

Applied Guideline for Suppressing Harmonics

PWM control reduces harmonics current significantly, due to sinusoidal wave at power supply side.

According to "Guideline for Suppressing Harmonics by the Users Who Receive High Voltage or Special High Voltage" issued by the Ministry of Economy, Trade and Industry, the converter factor (Ki) can be set to "0" (meaning harmonics occurrence is 0) when combining with the inverter.

Possible to reduce power supply facility capacity

Its power-factor control realizes the same phase current as the power-supply phase-voltage. The equipment, thus, can be operated with the power-factor of almost "1."

This makes it possible to reduce the power transformer capacity and downsize the other devices, compared with those required without the converter.

Upgraded braking performance

Regenerated energy occurring at highly frequent accelerating and decelerating operation and elevating machine operation is entirely returned to power supply side. Thus, energy saving during regenerative operation is possible. As the current waveform is sinusoidal during regenerative operation, no troubles are caused to the power supply system.

Rated continuous regeneration	100%
Rated regeneration for 1 min	150% MD (CT) spec.
	120% LD (VT) spec.

*Stack type: 110%

Enhanced maintenance/protective functions

Failure can be easily analyzed with the trace back (option).

- The past 10 alarms can be displayed with the keypad LED display. This helps you analyze the alarm causes and take countermeasures.
- (2) When momentary power failure occurs, the converter turns off the gates to enable continuous operation after recovery.
- ③The converter can issue warning signals like overload, heat sink overheating, or the end of service life prior to converter tripping.

Enhanced network support

•The converter can be connected to MICREX-SX and CC-Link master devices (using option). The RS-485 interface is provided as standard. (Unit type)

Comparison of input current waveform

Allowable characteristics of the RHC unit

Standard Specifications

CT specifications (Unit Type)

400V series

Ту	pe RHC	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
Applicab	le inverter capacity [kW]	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	500	630
	Continuous capacity [kW]	8.8	13	18	22	26	36	44	53	65	88	103	126	150	182	227	247	314	353	400	448	560	705
Output	Overload rating	150	% of	rated	currer	nt for	1 min																
	Voltage	DC6	40 to	710V	(Varia	ble w	ith inp	out po	wer s	upply	volta	ige) (*:	2)										
Required	power supply capacity [kVA]	9.5	14	19	24	29	38	47	57	70	93	111	136	161	196	244	267	341	383	433	488	610	762
Carrier fr	equency (*4)	Stan	dard	15kH	z						Stan	dard	10kHz	Z								Standa	rd 6kHz
Power supply	Number of phase/Voltage/Frequency	3-ph	ase, 3	380 to	440V	50Hz	z, 380	to 46	60V 60)Hz (*	1)												
voltage	Voltage/Frequency variation	Volta	ige: +	10 to	-15%	, Frec	quenc	y: ±59	%, Vo	tage	unbal	ance:	2% o	r less	(*3)								
Enclosur	e	IP00	open	type																			
(h. 1) . A																							

7711

(*1) A connector inside converter must be reconnected accordingly when the power supply voltage is 380 to 398V/50Hz or 380 to 430V/60Hz. The capacity must be reduced when the power supply voltage is less than 400V. (*2) The output voltage is 640V DC, 686V DC, 710V DC when the power supply voltage is 400V, 440V and 460V, respectively. (*3) Voltage unbalance [%] = (Max. voltage [V] - Min. voltage [V])/Three-phase average voltage [V] × 67 (*4) Transformer isolation-less parallel system is used: 5kHz (*5) When inverter and converter are the same capacity, and an overload current uses it exceed 150%, select a converter with one rank higher capacity.

MD specifications (Stack Type)

400V series

/pe RHC⊡O-4D⊡	132S	160S	200S	220S	280S	315S	630B	710B	800B
e inverter capacity [kW]	132	160	200	220	280	315	630	710	800
Continuous capacity [kW]	150	182	227	247	314	353	705	795	896
Overload rating	150% of con	tinuous rating	for 1 min.						
Voltage	DC640 to 71	0V (variable w	ith input pow	er supply volt	age) (*2)				
oower supply capacity [kVA]	161	196	244	267	341	383	762	858	967
equency (*4)	Standard 5kł	Ηz							
Number of phase/Voltage/Frequency	3-phase, 380) to 440V 50H	z, 380 to 460	V 60Hz (*1)					
Voltage/Frequency variation	Voltage: -10	to +15%, Fre	quency:±5%,	Voltage unbal	ance: 2% or l	ess (*3)			
)	IP00 open ty	ре							
	pe RHC -4D a inverter capacity [kW] Continuous capacity [kW] Overload rating Voltage ower supply capacity [kVA] quency (*4) Number of phase/Voltage/Frequency Voltage/Frequency variation	pe RHC 132S a inverter capacity [kW] 132 Continuous capacity [kW] 150 Overload rating 150% of con Voltage DC640 to 71 ower supply capacity [kVA] 161 quency (*4) Standard 5kH Number of phase/Voltage/Frequency 3-phase, 380 Voltage/Frequency variation Voltage: -10 IP00 open ty	pe RHC -4D 132S 160S a inverter capacity [kW] 132 160 Continuous capacity [kW] 150 182 Overload rating 150% of continuous rating Voltage DC640 to 710V (variable w ower supply capacity [kVA] 161 196 quency (*4) Standard 5kHz Standard 5kHz Number of phase/Voltage/Frequency 3-phase, 380 to 440V 50H Voltage/Frequency variation Voltage: -10 to +15%, Frequency	pe RHC□○-4D□ 132S 160S 200S a inverter capacity [kW] 132 160 200 Continuous capacity [kW] 150 182 227 Overload rating 150% of continuous rating for 1 min. 200 Voltage DC640 to 710V (variable with input pow ower supply capacity [kVA] 161 196 244 quency (*4) Standard 5kHz Voltage/Frequency 3-phase, 380 to 440V 50Hz, 380 to 460° Voltage/Frequency:±5%, IP00 open type	pe RHC 0-4D 132S 160S 200S 220S a inverter capacity [kW] 132 160 200 220 Continuous capacity [kW] 150 182 227 247 Overload rating 150% of continuous rating for 1 min. Voltage DC640 to 710V (variable with input power supply volt. ower supply capacity [kVA] 161 196 244 267 quency (*4) Standard 5kHz Voltage 3-phase, 380 to 440V 50Hz, 380 to 460V 60Hz (*1) Voltage/Frequency variation Voltage: -10 to +15%, Frequency:±5%, Voltage unbal IP00 open type	pe RHC 0-4D 132S 160S 200S 220S 280S a inverter capacity [kW] 132 160 200 220 280 Continuous capacity [kW] 150 182 227 247 314 Overload rating 150% of continuous rating for 1 min.	pe RHC 0-4D 132S 160S 200S 220S 280S 315S a inverter capacity [kW] 132 160 200 220 280 315 Continuous capacity [kW] 150 182 227 247 314 353 Overload rating 150% of continuous rating for 1 min.	pe RHC 0-4D 132S 160S 200S 220S 280S 315S 630B a inverter capacity [kW] 132 160 200 220 280 315 630 Continuous capacity [kW] 150 182 227 247 314 353 705 Overload rating 150% of continuous rating for 1 min.	pe RHC 0-4D 132S 160S 200S 220S 280S 315S 630B 710B a inverter capacity [kW] 132 160 200 220 280 315S 630B 710B a inverter capacity [kW] 132 160 200 220 280 315 630 710 Continuous capacity [kW] 150 182 227 247 314 353 705 795 Overload rating 150% of continuous rating for 1 min. Voltage DC640 to 710V (variable with input power supply voltage) (*2) Voltage DC640 to 710V (variable with input power supply voltage) (*2) 858 858 858 858 858 858 858 858 858 858 858

690V series

Ту	/pe RHC⊡⊖-69D⊡	132S	160S	200S	250S	280S	315S	355S	400S	450S
Applicab	le inverter capacity [kW]	132	160	200	250	280	315	355	400	450
	Continuous capacity [kW]	150	182	227	280	314	353	400	448	504
Output	Overload rating	150% of con	tinuous rating	g for 1 min.						
	Voltage	DC920 to 10	65V (variable	with input pov	wer supply vo	ltage) (*2)				
Required	power supply capacity [kVA]	161	196	244	302	341	383	433	488	544
Carrier fr	equency (*4)	Standard 5kl	Hz							
Power supply	Number of phase/Voltage/Frequency	3-phase, 575	5 to 690V, 50⊦	lz/60Hz (*1)						
voltage	Voltage/Frequency variation	Voltage: -15	to +10%, Fre	quency: -5 to	+5%, Voltage	unbalance: 2	% or less (*3)			
Enclosur	e	IP00 open ty	ре							
(*1) 4001/	vise: A compositor incide convert			بمطاه معمانين بالمعا		Here is 000 to 0	001//501 00	0 to 1001//0011-	The conceiture	

rdingly when the power supply voltage is 380 to 398V/50Hz or IV/60Hz. The ca when the power supply voltage is less than 400V.

690V series: When the power supply voltage is 575 to 629V/50Hz, 60Hz, a connector inside converter must be reconnected accordingly.

When the power supply voltage is less than 575V, the capacity needs to be reduced. (*2) 400V series: The output voltage is 640V DC, 686V DC, 710V DC when the power supply voltage is 400V, 440V and 460V, respectively.

690V series: When the power supply voltage is 575V and 690V, the output voltage is 920 VDC and 1065 VDC, respectively. (*3) Inter-phase voltage unbalance ratio [%] = (Max. voltage [V] - Min. voltage [V]) /3-phase average voltage x 67 (*4) Transformer isolation-less parallel system is used : 2.5kHz

Common specifications (Unit and Stack Type)

	ltom	Specific	cations
	item	Unit Type	Stack Type
	Control method	AVR constant control with ACR minor loop.	
	Running and operation	Rectification starts with power ON after connected. Boostin	g starts with the running signal (RUN-CM short-circuit
	ridining and operation	or running command from communications). Then, preparat	ion for operation is completed.
	Running status signal	Running, driving, regenerating, operation ready, alarm rela	y output (for any fault), etc.
Control	MD(CT)/LD(VT) switching	Selecting from MD (CT): Overload rating 150% (1 min.) and LD (VT): Overload rating 120% (1 min.)	Selecting from MD (CT): Overload rating 150% (1 min.) and LD (VT): Overload rating 110% (1 min.)
Control	Carrier frequency	Fixed to high carrier frequency	5kHz (*1)
	Input power factor	Above 0.99 (when 100% loading)	
	Input harmonics current	According to the guideline for suppressing harmonics issued by the Ministry	of Economy, Trade and Industry, the converter factor (Ki) can be set to 0.
	Restart mode after momentary power failure	Stops the gates when the voltage level reaches undervoltage level if momentary power	failure occurs, and the converter can automatically restart after the power recovers.
	Power limit control	Controls the power not to exceed the preset limit value.	
		AC fuse blown, AC overvoltage, AC undervoltage, AC overcurrent, A	AC input current error, Input phase loss, Synchronous power supply
	Alarm display	frequency error, DC fuse blown, DC overvoltage, DC undervoltage,	Charge circuit error, Heat sink overheat, External alarm, Converter
	(protective functions)	overheat, Overload, Memory error, Keypad communication error, CF	PU error, Network device error, Operation procedure error, A/D
		converter error, Optical network error, IPM error (*2)	
Displays	Alarm history	Records and displays the last 10 alarms.	
of	Alaministory	The detailed information of the trip cause for the latest ala	rm is stored and displayed.
Keypad	Monitor	Displays input power, input effective current, input effective v	oltage, DC intermediate current and power supply frequency.
	Load factor	The load rate can be measured by using the keypad.	
	Display language	Text can displayed in 3 languages: Japanese, English and	Chinese.
	Charge LED	Lights when the main circuit capacitor is charged.	Lights when the main circuit capacitor is charged.
			Lights even when only input for control power.

(*1) The carrier frequency is automatically set to 2.5kHz when OPC-VG7-SIR is installed (transformerless connection).

(*2) Not available in the stack type

Power regenerative PWM converter (RHC series)

Equipment Configuration List

Unit Type

Power	Nominal	PWM	Power sup	oply	Contacto	r for			Charging circui	it bo	X ^(*1)		Boosting	J	Filtering		Filterin	g	Filtering	3	Filtering c	ircuit
Supply	applied	converter	contact	or	power so	urce			Charger resist	or	AC Fuse		reactor		resistor		reacto	r	capacito	or	contac	ior
voitage	motor [kw]	Type	(73)	Q'ty	(52)	Q'ty	(CU)	Q'ty	(R0)	Q'ty	(Fac)	Q'ty	(Lr)	Qʻty	(Rf)	Q'ty	(Lf)	Q'ty	(Cf)	Q'ty	(6F)	Q'ty
	7.5	RHC7.5-4C	SC-05	1			CU7.5-4C	1	(TK50B 30ΩJ)	(3)	(CR6L-30/UL)	(2)	LR4-7.5C	1	GRZG80 1.74Ω	3	LFC4-7.5C	1	CF4-7.5C	1		
	11	RHC11-4C	SC-4-0	1]		CU15-4C	1	(HF5B0416)		(CR6L-50/UL)	(2)	LR4-15C	1	GRZG150 0.79Ω	3	LFC4-15C	1	CF4-15C	1		
	15	RHC15-4C	SC-5-1	1]																	
	18.5	RHC18.5-4C	SC-N1	1	1		CU18.5-4C	1	(80W 7.5Ω)	(3)			LR4-22C	1	GRZG200 0.53Ω	3	LFC4-22C	1	CF4-22C	1		
	22	RHC22-4C					CU22-4C	1	(HF5C5504)		(CR6L-75/UL)	(2)										
	30	RHC30-4C	SC-N2	1]		CU30-4C	1			(CR6L-100/UL)	(2)	LR4-37C	1	GRZG400 0.38Ω	3	LFC4-37C	1	CF4-37C	1		
	37	RHC37-4C	SC-N2S	1]		CU45-4C	1			(CR6L-150/UL)	(2)										
	45	RHC45-4C	SC-N3	1]								LR4-55C	1	GRZG400 0.26Ω	3	LFC4-55C	1	CF4-55C	1		
	55	RHC55-4C	SC-N4	1			CU55-4C	1			(CR6L-200/UL)	(2)										
	75	RHC75-4C	SC-N5	1]		CU75-4C	1					LR4-75C	1	GRZG400 0.38Ω	3	LFC4-75C	1	CF4-75C	1		
400V	90	RHC90-4C	SC-N7	1			CU90-4C	1			(CR6L-300/UL)	(2)	LR4-110C	1	GRZG400 0.53Ω	6	LFC4-110C	1	CF4-110C	1		
series	110	RHC110-4C	SC-N8	1	1		CU110-4C	1	(GRZG120 2Ω)	(3)					[2 parallel]							
	132	RHC132-4C					CU132-4C	1			(A50P400-4)	(2)	LR4-160C	1	RF4-160C	1	LFC4-160C	1	CF4-160C	1		
	160	RHC160-4C	SC-N11	1]		CU160-4C	1			(A50P600-4)	(2)										
	200	RHC200-4C	SC-N12	1]		CU200-4C	1	(GRZG400 1Ω)	(3)			LR4-220C	1	RF4-220C	1	LFC4-220C	1	CF4-220C	1		
	220	RHC220-4C					CU220-4C	1			(A70QS800-4)	(2)										
	280	RHC280-4C	SC-N3	1	SC-N14	1			GRZG400 1Ω	6	A70QS800-4	2	LR4-280C	1	RF4-280C	1	LFC4-280C	1	CF4-280C	1	SC-N4	1
	315	RHC315-4C							[2 parallel]		A70P1600-4TA	2	LR4-315C	1	RF4-315C	1	LFC4-315C	1	CF4-315C	1		
	355	RHC355-4C											LR4-355C	1	RF4-355C	1	LFC4-355C	1	CF4-355C	1		
	400	RHC400-4C	1		SC-N16	1							LR4-400C	1	RF4-400C	1	LFC4-400C	1	CF4-400C	1		
	500	RHC500-4C	1		SC-N11	3							LR4-500C	1	RF4-500C	1	LFC4-500C	1	CF4-500C	1(*2)	SC-N4("3)	1
	630	RHC630-4C			SC-N12	3					A70P2000-4	2	LR4-630C	1	RF4-630C	1	LFC4-630C	1	CF4-630C	1(*2)	SC-N7("3)	1

Stack Type

Power	Nominal	PWM	Pow	er sup	ply Co	ontacto	or for			Charging circ	cuit b	DX ^(*1)		Boosting	3	Filtering		Filterir	ng	Filterin	g	Filtering	circuit
Supply	applied	converter	co	ntacto	or po	wer so	ource			Charger resi	stor	AC Fuse		reactor		resistor		reacto	or	capacit	or	contac	ctor
Voltage	motor [kW]	Туре	(7	3)	Q'ty	(52)	Q'ty	(CU)	Q'ty	(R0)	Q't	(Fac)	Q'ty	(Lr)	Qʻty	(Rf)	Q'ty	(Lf)	Q't	(Cf)	Q'ty	(6F)	Q'ty
	132	RHC132S-4D																					
	160	RHC160S-4D]																				
	200	RHC200S-4D]					Diago	~	oo Filtor	C+-		~			lataila rafar	+~	0000	21				
400V	220	RHC220S-4D	1					Pleas	e u	ise Filler	318	ICK (NNF S	en	es). го	rc	ietalis, reier	ιO	page	51				
series	280	RHC280S-4D	1																				
	315	RHC315S-4D]																				
	630	RHC630B-4D	SC-N	3	1 SC	C-N12	3			GRZG400 1Ω	6	SA598473	2	LR4-630C	1	RF4-630C	1	LFC4-6300	1	CF4-630C	1(*2)	SC-N7(*3)	9 1
	710	RHC710B-4D	SC-N	4	1					[2 parallel]		HF5G2655	2	LR4-710C	1	RF4-710C	1	LFC4-7100	; 1	CF4-710C	1(*2)	SC-N8	1
	800	RHC810B-4D]		SC	C-N14	3							LR4-800C	1	RF4-800C	1	LFC4-800C	; 1	CF4-800C	1(*2)		
	132	RHC132S-69D																					
	160	RHC160S-69D]																				
	200	RHC200S-69D]																				
6901/	250	RHC250S-69D]						fili	tor stack	(RL	JE Sorios)											
sorios	280	RHC280S-69D]						(III) d (Га		(11)	II Genes).	ile.	unfou to the		windowel elevision ou		4					
361163	315	RHC315S-69D]					(52) ani	и (га	ic) are required	a set	arately. For deta	uis,	reier to the	e pe	riprieral devices or	193	1.					
	355	RHC355S-69D]																				
	400	RHC400S-69D]																				
	450	RHC450S-69D																					

(Note 1) RHC132S-4D to RHC315S-4D: Contact Fuji if using a peripheral device (73, CU, R0, Fac, Lr, Rf, Lf, Cf) other than a filter stack.

(*1) The charging resistor (R0) and AC fuse (F) have been built inside the charging circuit box (CU). When the charging circuit box (CU) is not ordered, the charging resistor (R0) and fuse (F) must be ordered separately.

(*2) The filter capacitor consists of two capacitors. A pair of capacitors is shipped by ordering "1" pc.

(*3) If applying the OPC-VG7-SIR and using with a transformerless parallel system, change (6F) to SC-N8.

Optional card

Name Type		Specifications				
Optical communication	OPC-VG7-SIR	Using this option card makes possible to perform the load sharing control in a parallel connection system.				

Wiring Diagram

Basic Wiring Diagram

- (Note 1) For the 400 V class power supply, connect a stepdown transformer to limit the voltage of the sequence circuit to 220 V or below.
 (Note 2) Be sure to connect the auxiliary power input terminals R0 and T0 of the PWM converter to the main power input lines via B contacts of magnetic contactors of the charging circuit (73 or MC). Note that when applied to an ungrounded power supply, an insulated transformer is required. For the details, refer to the "PWM Converter Instruction Manual".
 (Note 3) Be sure to connect the auxiliary power input terminals R0 and T0 of the inverter to the main power singuined. For the details, refer to the "PWM Converter Instruction Manual".
 (Note 3) Be sure to connect the auxiliary power input terminals R0 and T0 of the inverter to the main power input lines via B contacts of magnetic contactors of the charging circuit (73 or MC). For the capacities FRN75VG15-4U or higher and stack type inverter (all capacity range), connect the fan power input terminals R1 and T1 of the inverter to the main power input lines without going through the MC's B contacts or 73.
 (Note 4) Construct a sequence in which a run command is given to the inverter after the PWM converter becomes ready to run.
- converter becomes ready to run.
 (Note 5) Assign the external alarm THR to any of terminals [X1] to [X9] on the inverter.
 (Note 6) Wining for terminals 1/R, L2/S, L3/T, R2, T2, R1, S1, and T1 should match with the phase sequence.
 (Note 7) Not available in the unit type inverter.

<Unit Type>

RHC280-4C to RHC400-4C

- (Note 1) For the 400 V class power supply, connect a stepdown transformer to limit the voltage of the sequence circuit to 220 V or below.
 (Note 2) Be sure to connect the auxiliary power input terminals R0 and T0 of the PWM converter to the main power input lines via B contacts of magnetic contactors of the charging circuit (52). Note that when applied to an ungrounded power supply, an insulated transformer is required. For the details, refer to the "PWM Converter Instruction Manual".
 (Note 3) Be sure to connect the fan power input terminals R1 and T1 of the inverter to the main power input lines without going through the MC's B contacts or 73.
 (Note 4) Construct a sequence in which a run command is given to the inverter after the PWM converter for the inverter of the main power comes ready to run.
- (Note 4) Construct a sequence in which a run command is given to the inverter after the PWM converter becomes ready to run.
 (Note 5) Set the timer 52T at 1 sec.
 (Note 6) Assign the external alarm THR to any of terminals [X1] to [X9] on the inverter.
 (Note 7) Wiring for terminals L1/R, L2/S, L3/T, R2, T2, R1, S1, and T1 should match with the phase sequence.
 (Note 8) Not available in the unit type inverter.

- (Note 1) For the 400 V class power supply, connect a stepdown transformer to limit the voltage of the sequence circuit to 220 V or below.
 (Note 2) Be sure to connect the auxiliary power input terminals R0 and T0 of the PWM converter to the main power input lines via B contacts of magnetic contactors of the charging circuit (73 or MC). Note that when applied to an ungrounded power supply, an insulated transformer is required. For the details, refer to the "PWM Converter Instruction Manual".
 (Note 3) Be sure to connect the auxiliary power input terminals R0 and T0 of the inverter to the main power supply, an insulated transformer is required. For the details, refer to the "PWM Converter Instruction Manual".
 (Note 3) Be sure to connect the auxiliary power input terminals R0 and T0 of the inverter to the main power input times via B contacts of magnetic contactors of the charging circuit (73 or MC). For the capacities FRN75VG1S-4__ or higher and stack type inverter (all capacity range), connect the fan power input terminals R1 and T1 of the inverter to the main power input lines without going through the MC's B contacts or 73.
 (Note 4) Constuct as equence in which are normand is given to the inverter after the PVM converter becomes ready to run.
- (Note 4) Construct a sequence in which aru command is given to the inverter after the PWM converter becomes ready to run. (Note 5) Assign the external alarm THR to any of terminals [X1] to [X9] on the inverter. (Note 6) Winnig for terminals L1/R, L2/S, L3/T, R2, T2, R1, S1, and T1 should match with the phase sequence. (Note 7) Not available in the unit type inverter.

<Unit Type> RHC500-4C to RHC630-4C

<Stack Type> RHC630S-4D to RHC800B-4D

- (Note 1) For the 400 V class power supply, connect a stepdown transformer to limit the voltage of the sequence circuit to 220 V or below.
 (Note 2) Be sure to connect the auxiliary power input terminals R0 and T0 of the PWM converter to the main power input lines via B contacts of magnetic contactors of the charging circuit (52). Note that when applied to an ungrounded power supply, an insulated transformer is required. For the details, refer to the "PVM Converter Instruction Manual".
 (Note 3) Be sure to connect the fan power input terminals R1 and T1 of the inverter to the main power input lines without going through the MC's B contacts or 73.
 (Note 4) Construct a sequence in which a run command is given to the inverter after the PVMM converter for the inverter for the i
- (Note 4) Construct a sequence in which a run command is given to the inverter after the PWM converter becomes ready to run.
 (Note 5) Set the timer 52T at 1 sec.
 (Note 6) Assign the external alarm THR to any of terminals [X1] to [X9] on the inverter.
 (Note 7) Wiring for terminals L1/R, L2/S, L3/T, R2, T2, R1, S1, and T1 should match with the phase sequence.
 (Note 8) Not available in the unit type inverter.

Power regenerative PWM converter (RHC series)

. | |

Dimensions

PWM converter (Unit Type)

RHC7.5-4C to RHC15-4C

PUVIVI	www.converter.tvoe i		vivi converter type	L LICI										
	ionitor type	' 'g	w	W1	н	H1	D	D1	n	в	с	weight (kg		
	RHC7.5-4C	Α	250	226	380	358	245	125	2	10	10	12.5		
	RHC11-4C													
	RHC15-4C													
	RHC18.5-4C	в	340	240	480	460	255	145	2	10	10	24		
	RHC22-4C													
	RHC30-4C	в	340	240	550	530	255	145	2	10	10	29		
	RHC37-4C	в	375	275	550	530	270	145	2	10	10	34		
	RHC45-4C	в	375	275	675	655	270	145	2	10	10	38		
	RHC55-4C	в	375	275	675	655	270	145	2	10	10	39		
	RHC75-4C	в	375	275	740	720	270	145	2	10	10	48		
400V	RHC90-4C	С	530	430	740	710	315	175	2	15	15	70		
series	RHC110-4C													
	RHC132-4C	С	530	430	1000	970	360	220	2	15	15	100		
	RHC160-4C													
	RHC200-4C	С	680	580	1000	970	360	220	3	15	15	140		
	RHC220-4C													
	RHC280-4C	С	680	580	1400	1370	450	285	3	15	15	320		
	RHC315-4C													
	RHC355-4C	С	880	780	1400	1370	450	285	4	15	15	410		
	RHC400-4C													
	RHC500-4C	D	999	900	1550	1520	500	313.2	4	15	15	525		
	RHC630-4C													

Dimensions [mm]

Dimensions [mm]

н D

W

226.2 1100 565

226.2 1400 565

226.2 1400 565

226.2 1100 565

226.2 1400 565 Approx. weight [kg]

95

125 135

135×3

105

140

Approx.

PWM converter (Stack Type)

Peripheral equipment

<Boosting reactor>

Fig. C

Boosting reactor type		Fig				Ľ	imensi	ons (mr	nj				weight
Doosan	g reactor type	Fig	W	W1	н	D	D1	D2	К	М	N	N1	[kg]
	LR4-7.5C	в	180	75	205	105	85	90	7	M4	-	-	12
	LR4-15C	А	195	75	215	131	110	120	7	M5	-	-	18
	LR4-22C	С	240	80	340	215	180	120	10	M6	-	-	33
	LR4-37C	С	285	95	405	240	205	130	12	M8	-	-	50
	LR4-55C	С	285	95	415	250	215	145	12	M10	-	-	58
	LR4-75C	С	330	110	440	255	220	150	12	M10	-	-	70
	LR4-110C	С	345	115	490	280	245	170	12	M12	-	-	100
	LR4-160C	С	380	125	550	300	260	185	15	M12	-	-	140
400V series	LR4-220C	С	450	150	620	330	290	230	15	M12	-	-	200
	LR4-280C	С	480	160	740	330	290	240	15	M16	-	-	250
	LR4-315C	С	480	160	760	340	300	250	15	M16	-	-	270
	LR4-355C	С	480	160	830	355	315	255	15	M16	-	-	310
	LR4-400C	С	480	160	890	380	330	260	19	M16	-	-	340
	LR4-500C	С	525	175	960	410	360	290	19	M16	-	-	420
	LR4-630C	D	600	200	640	440	390	290	19	-	75	17.5	450
	LR4-710C	Е	645	215	730	440	390	295	19	-	100	30	510
	LR4-800C	Е	690	230	850	450	400	290	19	-	100	30	600

<Filtering reactor>

_ W1

4-ø19

-**∲**| ∎X1

Power regenerative PWM converter (RHC series)

Dimensions

Peripheral equipment

<Filtering capacitor>

<Filtering resistor>

<Charging circuit box>

<Charger resistor>

<Fuse>

Fig. B

¢

6

W2

W1

	Fuse type			Dimensions [mm]								
	ruse type	Fig	w	W1	W2	н	D	D1	G	E	[g]	
	CR6L-30/UL	A	76	62	47	18.5	17.5	12	2	6.5x8.5	42	
	CR6L-50/UL											
	CR6L-75/UL	A	95	70	40	34	30	25	3.2	11x13	150	
	CR6L-100/UL											
	CR6L-150/UL											
	CR6L-200/UL	Α	107	82	43	42	37	30	4	11x13	246	
400V	CR6L-300/UL											
series	A50P400-4	В	110	78.6	53.1	-	38.1	25.4	6.4	10.3x18.4	300	
	A50P600-4	в	113.5	81.75	56.4	-	50.8	38.1	6.4	10.3x18.2	600	
	A70QS800-4	в	180.2	129.4	72.2	-	63.5	50.8	9.5	13.5x18.3	1100	
	A70P1600-4TA	С	-	-	-	-	-	-	-	-	7400	
	A70P2000-4	С	-	-	-	-	-	-	-	-	8000	
	HF5G2655	D	-	-	-	-	-	-	-	-	4700	
	SA598473	Е	-	-	-	-	-	-	-	-	4500	

The "SA598473" will be used for the stack type inverter. For the detail, refer to the FRENIC-VG User Manual (For the Stack Type).

Fig. E

[Unit: mm]

Filter stack (RHF series) for Power regenerative PWM converter (RHC-D)

Features

This is a dedicated filter stack for the high power factor PWM converter with power regenerative function (RHC-D Series).

This device is used in combination with the RHC-D Series, and peripheral devices (filtering circuit, boosting circuit, charging circuit) required by the PWM converter have been combined into a single unit.

Peripheral device wire reduction and attachment space saving is possible.

A stack type with same shape as the inverter (stack type) and PWM converter (RHC-D) has been adopted. This has been effective in making panels more compact.

Specifications (RHF series)

400V series

Type RHF S-4D	160	220	280	355			
Rated current [A]	282	384	489	619			
Main power	3-Phase 380 to 440V/50Hz, 380 to 460V/60Hz						
Phase, Voltage, Frequency	Voltage: +10 to -15%, Frequency: +5 to -5%						
Approx. weight [kg]	155	195	230	250			
Enclosure	IP00 open type						

690V series

Type RHF S-69D	160	220	280	355	450		
Rated current [A]	163	223	283	359	455		
Main power Phase, Voltage, Frequency	3-Phase 575 to 690V, 50Hz/60Hz Voltage: +10 to -15%, Frequency: +5 to -5%						
Approx. weight [kg]	180	215	230	255	280		
Enclosure	IP00 open type						

Terminal Functions

Category	Symbol	Name	Functions					
	L1,L2,L3	Main power input	Connects a 3-phase power supply.					
	U0,V0,W0	Filter output	Connect to PWM converter power input terminals L1/R, L2/S, and L3/T.					
	L4,L5,L6	Charging circuit input	Connects a 3-phase power supply.					
Main	E(G)	Grounding	Ground terminal for filter stack chassis (housing).					
circuit	R3,T3 Fan power supply input		To be used as supply input of AC cooling fan inside of filter stack.					
	R11,R12 T11,T12	Fan power supply input (at input of 200 V)	Used when 200 VAC is input as the filter stack internal AC cooling fan power supply. When inputting 200 VAC, remove the shorting wires between terminals R11 and R12 and T11 and T12, and connect them to terminals R12 and T12.					
		Power supply voltage	Change the terminal connection based on the fan power supply input terminal.					
	01,02	switching terminal	For details, refer to the filter stack (RHF-D) Instruction Manual.					
Input signal	73-1 73-2	Control input of contactor for charging circuit	Input control signal for contactor for charging circuit. <rated capacity="" coil="" of=""> <400V series> At power on 200 V/50 Hz: 120 VA, 220 V/60 Hz: 135 VA At power hold 200 V/50 Hz: 12.7 VA, 220 V/60 Hz: 12.4 VA <690V series> At power on 200V/50Hz: 120VA, 220V/60Hz: 135VA At power hold 200V/50Hz: 12.7V, 220V/60Hz: 12.4VA</rated>					
Output	ONA ONB ONC	Operation signal of charging circuit	Auxiliary contact of contactor for charging circuit To be used as signal for operational check of charging circuit. Contact rating: 24 VDC 3 A * Min. working voltage/current: 5 VDC 3 mA					
signal	1 2	Overheating signal output	Signal is output when internal parts of filter stack are overheated. Contact rating: 24 VDC, 3 mA /max					

Wiring Diagram

3-phase 400V series **MD** application

PWM converter	Filter stack (RHF-D)	MCCB, ELCB	Electromagneti	c contactor (52)	AC fus	e (Fac)	Microswitch	
(RHC-D)	Туре	Rated current [A]	Туре	Q'ty	Туре	Q'ty	Туре	Q'ty
RHC132S-4D	RHF160S-4D	300	SC-N8	1	170M5446	3		
RHC160S-4D	RHF160S-4D	350	SC-N11	1	170M6546	3		
RHC200S-4D	RHF220S-4D	500	SC-N12	1	170M6547	3	1701/2007	0
RHC220S-4D	RHF220S-4D	500	SC-N12	1	170M6547	3	170H3027	3
RHC280S-4D	RHF280S-4D	600	SC-N14	1	170M6499	3		
RHC315S-4D	RHF355S-4D	700	SC-N14	1	170M6500	3		

3-phase 690V series

MD application

PWM converter	Filter stack (RHF-D)	MCCB, ELCB Electromagnetic contactor (52)		AC fus	e (Fac)	Microswitch		
(RHC-D)	Туре	Rated current [A]	Туре	Q'ty	Туре	Q'ty	Туре	Q'ty
RHC132S-69D	RHF160S-69D	175	SC-N6	1	170145447	0		
RHC160S-69D	RHF160S-69D	200	SC-N7	1	1701013447	3		
RHC200S-69D	RHF220S-69D	250	SC-N8	1	170M5448	3		
RHC250S-69D	RHF280S-69D	300	SC-N8	1				
RHC280S-69D	RHF280S-69D	350	SC-N11	1	170M6548	3	170H3027	3
RHC315S-69D	RHF355S-69D	400	SC-N11	1				
RHC355S-69D	RHF355S-69D	500	SC-N12	1				
RHC400S-69D	RHF450S-69D	500	SC-N12	1	170M6500	3		
RHC450S-69D	RHF450S-69D	600	SC-N14	1				

Lf	Filtering reactor
Cf	Filtering capacitor
Rf	Filtering resistor
R0	Charger resistor
Fac	AC fuse
Fdc	DC fuse
73	Magnetic contactor for charging circuit
52	Magnetic contactor for power supply

bol

Filter stack (RHF series) for Power regenerative PWM converter (RHC-D)

Fig. B

1400(H)

190

MAX 226.2(W)

220

160

201

63 94

<u>30</u>

Dimensions

[Unit:mm]

RHF280S-4D , RHF355S-4D RHF220S-69D , RHF280S-69D RHF355S-69D RHF355S-69D

[Unit:mm] RHF450S-69D

	Citize stands to an	E.e.	External dimensions[
Series	Filter stack type	rig	W	н	D	
	RHF160S-4D	A	226.2	1166	565	
400V Series	RHF220S-4D	A]			
	RHF280S-4D	В	226.2	1400	565	
	RHF355S-4D	В	1			
	RHF160S-69D	A	226.2	1166	565	
	RHF220S-69D	В	226.2	1400	565	
690V Series	RHF280S-69D	В	1			
361165	RHF355S-69D	В	1			
	RHF450S-69D	С	336.2	1400	565	

Diode rectifier (RHD-D)

FUJI INVERTER & CONVERTERS

Variable Speed AC Drives

Features

Converter type

Diode rectifier converts AC power to DC power, then supplies DC power to inverter.

Substantial applicable capacity

A large capacity system may be constructed by connecting converters in parallel. (3-parallel, 12-pulse rectifying system: using 6 units of diode rectifiers) •MD specification: 1450kW (400V series), 2000kW (690V series) •LD specification: 1640kW (400V series)

Suppression of harmonic currents *Equipped with DC reactor as standard

This unit is equipped with DC reactor for suppression of the harmonic currents. Further suppression of harmonic currents is made possible by creating a 12-pulse rectifier system in combination with power transformer, when connecting more than one unit in parallel.

Control device

A braking unit and braking resistor are available as options (externally attached). Capacity can be selected based on the amount of regenerative (braking) energy, facilitating a compact system construction.

Standard Specifications

400V series

	Model	RHD200S-4D	RHD315S-4D				
Max. connec	ction capacity [kW] (*1)	600	945				
Min. connec	tion capacity [kW] (*2)	110	180				
	Continuous rating [kW]	227	353				
Output	Overload rating	150% of continuous rating for 1 minute					
	Voltage	DC 436 to 747V (variable with input power supply voltage and load)					
Required por	wer supply capacity [kVA]	248	388				
	Main power	3-phase, 380 to 440V/50Hz, 380 to 480V 60Hz (*3)					
	Phase, Voltage, Frequency						
supply	Auxiliary input for fan power	Single phase 280 to 110//E0Hz 280 to 180// 60Hz /*	4)				
ouppiy	Phase, Voltage, Frequency	Single-phase, 360 to 4400/30Hz, 360 to 4600 60Hz (4)				
	Voltage/frequency variation	Voltage: +10 to -15%, Frequency: +5 to -5%, Voltage unbalance: 2% or less (*5)					
Approximate	weight [kg]	125	160				
Enclosure		IP00					

690V series

	Model	RHD220S-69D	RHD450S-69D			
Max. connec	tion capacity [kW] (*1)	660	1350			
Min. connect	ion capacity [kW] (*2)	132	250			
	Continuous rating [kW]	252	504			
Output	Overload rating	150% of continuous rating for 1 minute				
	Voltage	DC 776 to 1091V (variable with input power supply voltage and load)				
Required pov	549					
	Main power					
1	Phase, Voltage, Frequency	3-phase, 575 to 6900/50Hz, 60Hz ("3)				
Input power	Auxiliary input for fan power	Single-phase, 660 to 690V, 50/60Hz				
Supply	Phase, Voltage, Frequency	Single-phase, 575 to 600V, 50/60Hz (*4)				
	Voltage/frequency variation	Voltage: +10 to -15%, Frequency: +5 to -5%, Voltage	unbalance: 2% or less (*5)			
Approximate	weight [kg]	125	160			
Enclosure		IP00				

(*1) Represents the total capacity of connectable inverters; however, capacity which may be operated simultaneously in driving mode is continuous rating.

(*2) Represents the minimum capacity of connectable inverters. For less capacity the power factor decreases remarkably.

(*3) 400V series : Suppression of capacity is required for supply voltage under 400V.

690V series : Suppression of capacity is required for supply voltage under 690V.

(*4) 400V series : Connector inside the diode rectifier needs to be switched in case of 380 to 398V/50Hz and 380 to 430V/60Hz power supplies.

690V series : Connector inside the diode rectifier needs to be switched in case of 575 to 600V/50Hz, 60Hz power supplies

(*5) Interphase unbalance rate (%) = $\frac{\text{max. voltage [V]} - \text{min. voltage [V]}}{2} \times 67$

3-phase average voltage

Diode rectifier (RHD-D)

Terminal Functions

Category	Symbol	Name	Functions
	L1/R, L2/S, L3/T	Main supply input	Connect to 3-phase power supply.
	P(+), N(-)	Converter output	Connect to inverter power input terminals P (+) and N (-).
	E(G)	Ground terminal	Ground terminal of diode rectifier chassis (case)
	R1, T1	Fan power supply input	To be used as supply input of AC cooling fan inside of diode rectifier.
	D11 D10		Use if inputting 200 VAC for the diode rectifier internal AC cooling fan power supply.
Main circuit	T11 T12	Fan power supply input (at input of 200 V)	When inputting 200 VAC, remove the shorting wires between terminals R11 and R12
	111, 112		and T11 and T12, and connect them to terminals R12 and T12.
	73R	Power supply for charging circuit	Coil supply of charging circuit contactor for charging circuit.
	73T		Not to be used as power supply for external circuit.
		Power supply voltage switching	Change the terminal connection based on the power supply connected to the fan power supply input terminal.
	01, 02	terminal	For details, refer to the diode rectifier (RHD-D) Instruction Manual.
			Input control signal for charging circuit contactor.
			Control signal may also be input externally.
			Rated capacity of coil
	70.1	Control input of contactor for charging circuit	<400V series>
Input signal	73.0		At power on 200V/50Hz: 390VA, 220V/60Hz: 460VA
	10-2		At power hold 200V/50Hz: 28.6VA, 220V/60Hz: 28.8VA
			<690V series>
			At power on 470V/50Hz: 235VA, 220V/60Hz: 500VA
			At power hold 40.0V/50Hz: 20.0VA, 220V/60Hz: 39.0VA
	734	Output of control signal for	Control signal of charging circuit
	730	charging circuit	Can also be used for external sequence circuits.
	100		Contact rating : 250 VAC 0.5 A cos ϕ =0.3, 30 VDC 0.5 A
Output signal ONA		Operation signal of charging	Auxiliary contact of charging circuit contactor.
o arpar orginar	ONC	circuit	To be used as signal for operational check of charging circuit.
			Contact rating: 24 VDC 3 A * Min. working voltage/current: 5 VDC 3 mA
	1	Overheating signal output	Signal is output when internal parts of diode rectifier are overheated.
	2	o romoaning orginal output	Contact rating: 24 VDC, 3 mA

DC417V±8V

DC375V±8V

ON S

to 1.5sec

<400V series>

Intermediate DC voltage

73A to 73C output signal

(*1) Refer to the basic wiring diagram for the connection method.

Connect contactors after initial charging is complete. Furthermore, do not open contactors while the inverter is running. Failure to observe this may result in damage to the initial charging circuit.

(*2) An output signal timing chart and the intermediate DC voltage (diode rectifier output voltage) during signal output are shown below.

Wiring Diagram

<690V series>

Intermediate DC voltage

73A to 73C output signal

DC580V±8V

DC470V±8V

ON ()

¦↔ Td=0.5 to 1.5sec

- Note 1) Construct a sequence so that the run command is input to the inverter after the initial charging of the diode rectifier has been completed. Set any of the X1 to X9 inverter terminals to the coast-to-stop command (BX), and set contact "b" input with function code E14 to input with contact "b". With this connection, the motor will coast to a stop if a momentary power failure occurs, and therefore the system should be equipped with an external interlock circuit for applications such as vertical transfer.
 Note 2) Outputs a diode rectifier overheating signal. After setting any of the X1 to X9 inverter terminals to external alarm (THR), it is necessary to connect. Set contact "b" input with function code E14 to input with contact "b".
 Note 3) If using a microswitch to detect AC fuse burnout, set any of the X1 to X9 inverter terminals to external alarm (THR), and then connect all microswitches in series. Set contact "b" input with function code E14 to input with contact "b".
 Note 4) If inputing 200 VAC for the fan power supply, remove the shorting wires between terminals R11 and T12.
 Note 5) Control signals for the charging circuit contact (73) and the drive power supply can be input bedremany. *X* and *X*

- Note 6) Control signals to the Charging oncur contactor (73) and the drive power supply can be input externally. Wire as shown below. Furthermore, 73A and 73C can also be used for external sequence circuits. Note 6) If connecting multiple diode rectifiers, turn on the electromagnetic contactors (52) for the power supply simultaneously. Furthermore, connect alarm relay outputs (1, 2), charging circuit actuating signals (ONA, ONB, ONC), and microswitch outputs for AC fuse burnout detection in create approxement and activity.
- signals (UNA, ONA, ONA), and microswitch outputs for AC fuse burnout detection in series across each stack.
 Note 7) If using the 400V series, connect Fdc (fuse) to the P(+) side. Fdc (fuse) is not required for the N(-) side.
 If using the 690V series, connect Fdc (fuse) to the P(+) and N(-) sides. (Connect two microswitches in series.)

Dimensions

Peripheral Devices

Three-phase 400V series

	Model	MCCB, ELCB	Electromagneti	ectromagnetic contactor (52)		AC Fuse (Fac)		Microswitch	
ппр-р туре	Woder	Rated current [A]	Туре	Q'ty	Туре	Q'ty	Туре	Q'ty	
RHD200S-4D	MD	500	SC-N12	1	170M6547	3	17010007	0	
RHD315S-4D	MD	700	SC-N14	1	170M6500	3	170H3027	3	

Three-phase 690V series

	Model	MCCB, ELCB	Electromagnetic contactor (52)		AC Fus	e (Fac)	Microswitch		
ппр-р туре	Woder	Rated current [A]	Туре	Q'ty	Туре	Q'ty	Туре	Q'ty	
RHD220S-69D	MD	300	SC-N11	1	170M6497	3	1701/2007	2	
RHD450S-69D	MD	600	SC-N14	1	170M6501	3	170H3027	3	

* AC fuses and microswitches are manufactured by Cooper Bussmann, but can also be ordered from Fuji.

For Cranes use

System configuration guides

System configuration guides (Example of Unit Type)

Surge killer for L-load

(Connect to the power circuit that is a generation source of surge.) IFSL-323 (for 3-phase)]

[FSL-123 (for single -phase)]

Peripheral and structure options

Attachment for external cooling

The attachment to install the heat sink part of the inverter outside the panel. [PBVG7-7.5 (for up to 7.5kW)] [PB-F1-30 (for 11 to 22kW)]

System configuration guides (Example of Stack Type)

System configuration quides

Options

The options for inverter.

Optional card

-						
Category	Name	Туре	Switch with SW on the Pt board	Specificat	ions	Remarks
Analog card	Synchronized interface	OPC-VG1-SN		Synchronizing interface circu	its for dancer control	
	Aio extension card	OPC-VG1-AIO		Extension card of Ai 2 points	+ Ao 2 points	
Digital card	Di interface card	OPC-VG1-DI	OPC-VG1-DI (A)	16 bit Di of binary or 4-digit E	BCD + sign	
(8 bit)			OPC-VG1-DI (B)	For setting the speed, torque and the	e torque current reference.	
	Dio extension card	OPC-VG1-DIO	OPC-VG1-DIO (A)	Extension of Di (4bits) and Do (8bits)	for function selection.	
				Dio option card for direct landing con	ntrol. Di × 16 bit + Do ×10 bit	
			OPC-VG1-DIO (B)	UPAC exclusive use		
	PG interface expansion card	OPC-VG1-PG	OPC-VG1-PG (SD)	+ 5V line driver type, voltage	output PGs	
			OPC-VG1-PG (LD)	(A,B and Z-phase signals).		
			OPC-VG1-PG (PR)	Used for detecting motor spe		
			OPC-VG1-PG (PD)	reference and position detect		
		OPC-VG1-PGo	OPC-VG1-PGo (SD)	Open collector type voltage of		
			OPC-VG1-PGo (LD)	(A,B and Z-phase signals).		
			OPC-VG1-PGo (PR)	Used for detecting motor spe		
			OPC-VG1-PGo (PD)	reference and position detect		
		OPC-VG1-SPGT		ABS encoder with 17 bit high	resolution	
	PG card for synchronous motor drive	OPC-VG1-PMPG		+5V line driver type	A, B + magnetic pole position	
		OPC-VG1-PMPGo		Open collector type	(Max. 4bit)	
	I-Link interface card	OPC-VG1-IL		I-Link interface card		
	CC-Link interface card	OPC-VG1-CCL		CC-Link compliant card (Ver	2.00)	
	High-speed serial connections for UPAC	OPC-VG1-SIU		Use for UPAC communicatio	n system	coming soon
Digital card	SX bus communication card	OPC-VG1-SX		SX bus communication card		
(16 DIT)	E-SX bus communication card	OPC-VG1-ESX		E-SX bus communication cal	ra	
	PROFINETIRT	OPC-VG1-PNET		PROFINE I-IRI communicatio	on card	
	Lines Descenterentels Application Court			Compatible only with special inv		
Fieldhue	Decremente operation Card	OPC-VG1-UPAC		Der programming card	J	
	PROFIBUS-DP	OPC-VG1-PDP		PROFIBUS-DP Interface card	1	
Interface card	Deviceinet	OPC-VG1-DEV		Deviceinet Internace card		
Safety card	Functional safety card	OPC-VG1-SAFE		Safety standard compliant ca	ard	
	In the second serial communications			For Windows (Free version)	stem, reactor connection system	
Loader	inverter support loader	WPS-VG1-SIK		For Windows. (Free Version)		
Deelvere eeftware	Tanaian control coffuero	WPS-VG1-PGL		For Windows. (Paid Version)		
Fackage sonware	Depeer control coffware	WPS-VG1-TEN		Supplied with invertor current	loador (Paid) CD POM	
	Dancer control software	WPS-VG1-DAN		Supplied with inverter support	ioauer (Paiu) CD-ROIM.	
	Position control sontware	WF3-VG1-PU3				

Cable

Category	Name	Туре	Length (m)	Specifications
Cable	Extension cable for remote control	CB-5S	5m	Connection cable between an inverter and the KEYPAD panel
		CB-3S	3m	
		CB-1S	1m	
	Encoder cable for GNF2	CB-VG1-PMPG-05S	5m	Straight plug
		CB-VG1-PMPG-15S	15m	
		CB-VG1-PMPG-30S	30m	
		CB-VG1-PMPG-50S	50m	
		CB-VG1-PMPG-05A	5m	Angle plug
		CB-VG1-PMPG-15A	15m	
		CB-VG1-PMPG-30A	30m	
		CB-VG1-PMPG-50A	50m	

Dedicated lifter for Inverter (Stack Type)

Applicable models: FRENIC-VG (Stack type), Converter (RHC-D, RHF-D, RHD-D)

Example of use of lifter

Variable Speed AC Drives

Braking resistor, braking unit (max. 150% torque, 10% ED)

			Dual da a co	. 14				-				
Power	Nominal	Inverter type	Braking ur	11t	Braking	resistor		(150% ton	tinuous bra	iking sion value)	(100s or le	e braking
supply	applied motor	l luit tura a *	For unit typ	be		Ohmia		May broking	Droking	Discharging	Duty svala	Average
voltage	[kW]	(HD spec)	Туре	Q'ty	Туре	value	Q'ty	torque [%]	time [s]	capability [kWs]	[%ED]	Average loss [kW]
	3.7	FRN3.7VG1S-4			DB3.7V-41B	96Ω	1			27.75	-	0.2775
	5.5	FRN5.5VG1S-4			DB5.5V-41B	64Ω	1			41.25		0.4125
	7.5	FRN7.5VG1S-4			DB7.5V-41B	48Ω	1			56.25		0.5625
	11	FRN11VG1S-4			DB11V-41B	32Ω	1			82.5		0.825
	15	FRN15VG1S-4			DB15V-41B	24Ω	1			112.5		1.125
	18.5	FRN18.5VG1S-4			DB18.5V-41B	18Ω	1			138.75		1.3875
	22	FRN22VG1S-4			DB22V-41B	16Ω	1	1		165		1.65
	30	FRN30VG1S-4]		DB30V-41B	10Ω	1			225		2.25
	37	FRN37VG1S-4	Built-in unit		DB37V-41B	9Ω	1			277.5	1	2.775
	45	FRN45VG1S-4			DB45V-41B	8Ω	1]		337.5	1	3.375
	55	FRN55VG1S-4			DB55V-41C	6.5Ω	1	1		412.5	1	4.125
4001/	75	FRN75VG1S-4			DB75V-41C	4.7Ω	1			562.5	1	5.625
4000	90	FRN90VG1S-4			DB90V-41C	3.9Ω	1	150%	10s	675	10%ED	6.75
series	110	FRN110VG1S-4			DB110V-41C	3.2Ω	1]		825	1	8.25
	132	FRN132VG1S-4			DB132V-41C	2.6Ω	1	1		990	1	9.9
	160	FRN160VG1S-4			DB160V-41C	2.2Ω	1			1200	1	12.0
	200	FRN200VG1S-4	BU000 40	_	DB200V-41C	3.5Ω/2	1			1500]	15.0
	220	FRN220VG1S-4	B0220-4C	2	DB220V-41C	3.2Ω/2	1]		1650	1	16.5
	250	_	-	-				1			1	
	280	FRN280VG1S-4	BU000 4C	2	DB160V-41C	2.2Ω/2	2			2100]	21.0
	315	FRN315VG1S-4	B0220-4C	2	DB160V-41C	2.2Ω/2	2			2363		23.6
	355	FRN355VG1S-4		2	DB132V-41C	2.6Ω/3	3			2663		26.6
	400	FRN400VG1S-4	BL1000 4C	3	DB132V-41C	2.6Ω/3	3			3000		30.0
	500	FRN500VG1S-4	B0220-4C	4	DB132V-41C	2.6Ω/4	4			3750		37.5
	630	FRN630VG1S-4		4	DB160V-41C	2.2Ω/4	4			4725		47.3

* For the unit type (MD) specification, refer to the User Manual.

* Please refer to the FRENIC-VG catalog for external dimensions.

(Note 1) The duty cycle [%ED] are calculated as the 150% torque braking used for deceleration as described below. (Note 2) Two braking resistors are required for each of DB160V-41C, DB200V-41C, or DB220V-41C.

(Note 3) When connecting three braking units or more in parallel, refer to the supplement document of the DB Unit instruction manual (notes in connecting multiple units) INR-HF51614*.

[Selection procedure] All three conditions listed below must be satisfied simultaneously.

1 "The maximum braking torque" does not exceed the value shown on the table.

2 The energy discharged in the resistor for each braking (the area of the triangle shown in the above figure) does not exceed "the discharging capability [kWs]" on the table. 3 The average loss (energy discharged in the resistor divided by the braking interval) does not exceed "the average loss [kW]" shown on the table.

Options

Brak	Braking resistor (max. 150% torque, 30%ED)										
Power	Nominal	Inverte	er type	Braking	resistor		Continuo (150% torque c	us braking onversion value)	Repetitive (100s or le	e braking ess cycle)	
voltage	[kW]	Unit type HD spec (Stack type MD spec)	Unit type MD spec	Туре	Ohmic value	Q'ty	Max. braking torque [%]	Discharging capability [kWs]	Duty cycle [%ED]	Average loss [kW]	
	3.7	FRN3.7VG1S-4		DB003V-430SA	96Ω	1		167		1.67	
	5.5	FRN5.5VG1S-4		DB005V-430SA	64Ω	1		248		2.48	
	7.5	FRN7.5VG1S-4		DB007V-430SA	48Ω	1		338		3.38	
	11	FRN11VG1S-4		DB011V-430SA	32Ω	1		495		4.95	
	15	FRN15VG1S-4		DB015V-430SA	24Ω	1		675		6.75	
	18.5	FRN18.5VG1S-4		DB018V-430SA	18Ω	1		833		8.33	
	22	FRN22VG1S-4		DB022V-430SA	16Ω	1		990		9.90	
	30	FRN30VG1S-4		DB030V-430SA	12Ω	1	150%	1350	30%ED	13.50	
	37	FRN37VG1S-4		DB037V-430SA	9Ω	1	15070	1665	JUNED	16.65	
	45	FRN45VG1S-4		DB045V-430SA	8Ω	1		2025	*Note	20.25	
	55	FRN55VG1S-4		DB055V-430SA	6.5Ω	1		2475	NOLE	24.75	
	75	FRN75VG1S-4		DB075V-430SA	4.7Ω	1		3375	_	33.75	
400V	90	FRN90VG1S-4		DB045V-430SA (2P)	4Ω	2		4050		40.50	
series	110	FRN110VG1S-4	FRN90VG1S-4	DB055V-430SA (2P)	3.25Ω	2		4950		49.50	
	132	FRN132VG1S-4	FRN110VG1S-4	DB045V-430SA (3P)	2.7Ω	3		6075		60.75	
	160	FRN160VG1S-4	FRN132VG1S-4	DB055V-430SA (3P)	2.2Ω	3		7425		74.25	
	200	FRN200VG1S-4	FRN160VG1S-4								
	220	FRN220VG1S-4	FRN200VG1S-4								
	250		FRN220VG1S-4								
	280	FRN280VG1S-4									
	315	FRN315VG1S-4	FRN280VG1S-4			0					
	355	FRN355VG1S-4	FRN315VG1S-4			C	onsuit with F	uji			
	400	FRN400VG1S-4	FRN355VG1S-4								
	450		FRN400VG1S-4								
	500	FRN500VG1S-4									
	630	FRN630VG1S-4									

* Inverters with a capacity of 160kW or below have a built-in braking circuit.

Braking resistor (max. 150% torque, 40%ED)

Power Nominal supply applied motor		Inverte	er type	Braking	resistor		Continuous braking (150% torque conversion value)		Repetitive braking (100s or less cycle)	
voltage	[kW]	Unit type HD spec (Stack type MD spec)	Unit type MD spec	Туре	Ohmic value	Q'ty	Max. braking torque [%]	Discharging capability [kWs]	Duty cycle [%ED]	Average loss [kW]
	3.7	FRN3.7VG1S-4		DB003V-440SA	96Ω	1		222		2.22
	5.5	FRN5.5VG1S-4		DB005V-440SA	64Ω	1		330		3.30
	7.5	FRN7.5VG1S-4		DB007V-440SA	48Ω	1		450	Ļ	4.50
	11	FRN11VG1S-4		DB011V-440SA	32Ω	1		660		6.60
	15	FRN15VG1S-4		DB015V-440SA	24Ω	1		900		9.00
	18.5	FRN18.5VG1S-4		DB018V-440SA	18Ω	1		1110	40%ED	11.10
	22	FRN22VG1S-4		DB022V-440SA	16Ω	1		1320		13.20
	30	FRN30VG1S-4		DB030V-440SA	12Ω	1	150%	1800		18.00
	37	FRN37VG1S-4		DB037V-440SA	9Ω	1	130 %	2220		22.20
	45	FRN45VG1S-4		DB045V-440SA	8Ω	1		2700	*Note	27.00
	55	FRN55VG1S-4		DB055V-440SA	6.5Ω	1		3300	NOLE	33.00
	75	FRN75VG1S-4		DB075V-440SA	4.7Ω	1		4500		45.00
400V	90	FRN90VG1S-4		DB045V-440SA (2P)	4Ω	2		5400		54.00
series	110	FRN110VG1S-4	FRN90VG1S-4	DB055V-440SA (2P)	3.25Ω	2		6600		66.00
	132	FRN132VG1S-4	FRN110VG1S-4	DB045V-440SA (3P)	2.7Ω	3		8100		81.00
	160	FRN160VG1S-4	FRN132VG1S-4	DB055V-440SA (3P)	2.2Ω	3		9900		99.00
	200	FRN200VG1S-4	FRN160VG1S-4							
	220	FRN220VG1S-4	FRN200VG1S-4							
	250		FRN220VG1S-4							
	280	FRN280VG1S-4								
	315	FRN315VG1S-4	FRN280VG1S-4			0				
	355	FRN355VG1S-4	FRN315VG1S-4			C	onsuit with F	uji		
	400	FRN400VG1S-4	FRN355VG1S-4							
	450		FRN400VG1S-4							
	500	FRN500VG1S-4								
	630	FRN630VG1S-4								

* Inverter with a capacity of 160kW or below have a built-in braking circuit.

(Note) *The braking time and duty cycle [%ED] are calculated as the constant-power braking as described below.

Dimensions (Braking resistor max.150% torque, 30%, 40% ED Spec.)

30%ED/constant-	nower (100s c	vcle)
30 70LD/COnstant-	power	1005 0	yue j

V-lb	Turne	Dimensio	ons [mm]	Mass
voitage	туре	Н	H1	[kg]
	DB003V-430SA	725	670	60
	DB005V-430SA			40
	DB007V-430SA]		
	DB011V-430SA			30
	DB015V-430SA	525	470	41
400V	DB018V-430SA		470	50
series	DB022V-430SA			60
	DB030V-430SA			63
	DB037V-430SA			80
	DB045V-430SA	725	670	125
	DB055V-430SA	925	870	138
	DB075V-430SA	1125	1070	230

Volta

seri

40%ED/constant-power (100s cycle)

Vallaria	Tura	Dimensi	ons [mm]	Mass
voitage	туре	Н	H1	[kg]
	DB003V-440SA	725	670	60
	DB005V-440SA			40
	DB007V-440SA			20
	DB011V-440SA			30
	DB015V-440SA	525	470	41
400V	DB018V-440SA			50
series	DB022V-440SA			60
	DB030V-440SA			76
	DB037V-440SA	725	670	110
	DB045V-440SA	925	870	140
	DB055V-440SA	1125	1070	200
	DB075V-440SA *Note	925	870	365

Note: DB075V-440SA is composed of 2 resistors of the described size. Mass shows the total weight.

Voltage	Туре	Fig	Dimensions [mm]						Approx.
			W	W1	Н	H1	H2	D	weight [kg]
400V series	BU37-4C	A	150	100	280	265	250		4
	BU55-4C		230	130	280	265	250		5.5
	BU90-4C		230	130	280	265	250	160	5.5
	BU132-4C		250	150	370	355	340		9
	BU220-4C		250	150	450	435	420		13

Fan unit for braking unit (BU-F)

Fan unit

Braking unit + Fan unit W2 D2 D4 D3 W3 -H4 H2

The duty cycle [%ED] of the model with an external braking unit is increased from 10% ED to 30% ED by using this option.

[Fan unit]

Tura	Dimensions [mm]				
туре	W1	H1	D1	ℓ (Fan power supply cable)	
BU-F	149	44	76	320	

[Braking unit + Fan unit]

	Voltogo	Turne	Dimensions [mm]								
	vonage	туре	W2	W3	W4	H2	H3	H4	D2	D3	D4
		BU37-4C+BU-F	150	135	7.5	280	30	310	160	1.2	64
		BU55-4C+BU-F	230		47.5	280		310			
	400V	BU90-4C+BU-F	230		47.5	280		310			
	series	BU132-4C+BU-F	250		57.5	370		400			
		BU220-4C+BU-F	250		57.5	450		480			

Options

The DC reactor is mainly used for the unit type. With the stack type, the DC reactor is built into the diode converter. * For details, refer to the Stack Type User Manual.

DC Reactor (DCR -)

*For models with a standard motor of 75kW or more, it is included as a standard.

Valtaga	Nominal	Inverte	Reactor	
voltage	motor [kW]	HD Specification	MD Specification	type
	3.7	FRN3.7VG1S-4	-	DCR4-3.7
	5.5	FRN5.5VG1S-4	-	DCR4-5.5
	7.5	FRN7.5VG1S-4	-	DCR4-7.5
	11	FRN11VG1S-4	-	DCR4-11
	15	FRN15VG1S-4	-	DCR4-15
	18.5	FRN18.5VG1S-4	-	DCR4-18.5
	22	FRN22VG1S-4	-	DCR4-22A
	30	FRN30VG1S-4	-	DCR4-30B
	37		-	DCR4-37B
	57	FRIN3/VG15-4	-	DCR4-37C
	45		-	DCR4-45B
	45		-	DCR4-45C
	55		-	DCR4-55B
400V		FRINDOVG15-4	-	DCR4-55C
1001	75	FRN75VG1S-4	-	DCR4-75C
series	90	FRN90VG1S-4	-	DCR4-90C
	110	FRN110VG1S-4	FRN90VG1S-4	DCR4-110C
	132	FRN132VG1S-4	FRN110VG1S-4	DCR4-132C
	160	FRN160VG1S-4	FRN132VG1S-4	DCR4-160C
	200	FRN200VG1S-4	FRN160VG1S-4	DCR4-200C
	220	FRN220VG1S-4	FRN200VG1S-4	DCR4-220C
	250	-	FRN220VG1S-4	DCR4-250C
	280	FRN280VG1S-4	-	DCR4-280C
	315	FRN315VG1S-4	FRN280VG1S-4	DCR4-315C
	355	FRN355VG1S-4	FRN315VG1S-4	DCR4-355C
	400	FRN400VG1S-4	FRN355VG1S-4	DCR4-400C
	450	-	FRN400VG1S-4	DCR4-450C
	500	FRN500VG1S-4	-	DCR4-500C
	630	FRN630VG1S-4	-	DCR4-630C

DC Reactor type	Remarks
Input power factor of DCR4/A/B: approx. 90 to 95%	The letter at the end of the type code varies depending on the capacity.
Input power factor of the DCR4- C: about 86 to 90%	This can be selected with the inverter of 37kW or above.

-The DC Reactor (DCR) in thick-frame are provided as standard (supplied adding to the unit). Inverter types with -4E and -4C on the end are not available as standard. Please purchase as options.

*The DCR4- B type is also prepared for motors of 75kW or above capacities, which are applicable as standard. Contact Fuji Electric for ordering product separately. * Please refer to the FRENIC-VG catalog for external dimensions.

Voltage	Reactor type
	ACR4-110
	ACR4-132
	ACR4-220
400V	ACR4-280
series	ACR4-355
	ACR4-450
	ACR4-530
	ACR4-630

Note) It is not necessary to use the reactor unless a particularly stable power supply is required, i.e., DC bus connection operation (PN connection operation). Use the DC reactor (DCR) as a measure against harmonics.

* Please refer to the FRENIC-VG catalog for external dimensions.

Zero-phase reactor for reducing radio noise (ACL-40B, ACL-74B, F200160)

Applied wire size list

Zero-phase reactor for reducing radio noise	Q'ty	No. of turns	Recommended wire size [mm ²] Note)	
	1	4	2.0, 3.5, 5.5	
ACL-40B	2	2	8, 14	
	1	4	8, 14	
ACL-74B	2	2	22, 38, 60, 5.5×2, 8×2, 14×2, 22×2	
	4	1	100, 150, 200, 250, 38×2, 60×2, 100×2	
E200160		1	325, 150×2, 200×2, 250×2,	
F200160DB	4		325×2, 150×3, 200×3, 250×3,	
F200160PB			325×3, 250×4, 325×4	

NOTE) Use a 600V HIV insulation cable (Allowable temp. 75°C).

Output circuit filter (OFL-___4A)

	applied		Filter					
Voltage		Unit	type	Stack type	Type			
	motor [kW]	HD Specification	MD Specification	MD Specification	турс			
	3.7	FRN3.7VG1S-4	-	-	OFL-3.7-4A			
	5.5	FRN5.5VG1S-4	-	-				
	7.5	FRN7.5VG1S-4	-	-	01 L-7.3-4A			
	11	FRN11VG1S-4	-	-	OEL-15-44			
	15	FRN15VG1S-4	-	-	UL-10-4A			
	18.5	FRN18.5VG1S-4	-	-	OEL-22-44			
	22	FRN22VG1S-4		-	01 L-22-4A			
	30	FRN30VG1S-4	-	FRN30SVG1S-4	OFL-30-4A			
	37	FRN37VG1S-4	-	FRN37SVG1S-4	OFL-37-4A			
	45	FRN45VG1S-4	-	FRN45SVG1S-4	OFL-45-4A			
	55	FRN55VG1S-4	-	FRN55SVG1S-4	OFL-55-4A			
	75	FRN75VG1S-4	-	FRN75SVG1S-4	OFL-75-4A			
400V	90	FRN90VG1S-4	-	FRN90SVG1S-4	OFL-90-4A			
series	110	FRN110VG1S-4	FRN90VG1S-4	FRN110SVG1S-4	OFL-110-4A			
	132	FRN132VG1S-4	FRN110VG1S-4	FRN132SVG1S-4	OFL-132-4A			
	160	FRN160VG1S-4	FRN132VG1S-4	FRN160SVG1S-4	OFL-160-4A			
	200	FRN200VG1S-4	FRN160VG1S-4	FRN200SVG1S-4	OFL-200-4A			
	220	FRN220VG1S-4	FRN200VG1S-4	FRN220SVG1S-4	OFL-220-4A			
	250	-	FRN220VG1S-4	FRN250SVG1S-4	OEL 200 44			
	280	FRN280VG1S-4	-	FRN280SVG1S-4	UFL-200-4A			
	315	FRN315VG1S-4	FRN280VG1S-4	FRN315SVG1S-4	OFL-315-4A			
	355	FRN355VG1S-4	FRN315VG1S-4	-	OFL-355-4A			
	400	FRN400VG1S-4	FRN355VG1S-4	-	OFL-400-4A			
	450	-	FRN400VG1S-4	-	OFL-450-4A			
	500	FRN500VG1S-4	-	-	OFL-500-4A			
	630	FRN630VG1S-4	-	FRN630BVG1S-4	OFL-630-4A			
	710	-	-	FRN710BVG1S-4	-			
	800	-	-	FRN800BVG1S-4	-			

* Carrier frequency is not limited with OFL-*** -4A.

* Please refer to the FRENIC-VG catalog for external dimensions.

When running general-purpose motors

Driving a 400V general-purpose motor

When driving a 400V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.

Torque characteristics and temperature rise
When the inverter is used to run a general-purpose
motor, the temperature of the motor becomes
higher than when it is operated using a commercial
power supply. In the low-speed range, the cooling
effect will be weakened, so decrease the output
torque of the motor. If constant torque is required in
the low-speed range, use a Fuji inverter motor or a
motor equipped with an externally powered
ventilating fan.

Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration.

- * Study use of tier coupling or dampening rubber.
- * It is also recommended to use the inverter jump frequencies control to avoid resonance points.

Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise.

When running special motors

Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.

Do not use inverters for driving motors equipped with series-connected brakes.

Geared motors

If the power transmission mechanism uses an oillubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.

Environmental conditions

Installation location

Use the inverter in a location with an ambient temperature range of -10 to 50°C.

The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

Combination with peripheral devices

Installing a molded case circuit breaker (MCCB)

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

Installing a magnetic contactor (MC) in the output (secondary) circuit

If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.

Installing a magnetic contactor (MC) in the input (primary) circuit

Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

Protecting the motor

The electronic thermal facility of the inverter can protect the general-purpose motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.

If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitors in the inverter (primary) circuit. Use a DC reactor to improve the inverter power factor. Do not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.

We recommend connecting a DC REACTOR to the inverter.

Megger test

When checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.

Wiring

· Wiring distance of control circuit

When performing remote operation, use twisted shielded wire and limit the distance between the inverter and the control box to 20m.

 Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (highfrequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is shorter than 50m. If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL).

When wiring is longer than 50m, and sensorless vector control or vector control with speed sensor is selected, execute off-line tuning.

Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

• Wiring type Do not use multicore cables that are normally used for connecting several inverters and motors.

Grounding

Securely ground the inverter using the grounding terminal.

Selecting inverter capacity

• Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

FƏ Fuji Electric Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan Phone: +81-3-5435-7057 Fax: +81-3-5435-7420 URL: http://www.fujielectric.com/